Advertisement

Radiophysics and Quantum Electronics

, Volume 61, Issue 10, pp 752–762 | Cite as

Millimeter-Wave Gyrotron Research System. I. Description of the Facility

  • Yu. V. Bykov
  • A. G. Eremeev
  • M. Yu. Glyavin
  • G. G. Denisov
  • G. I. Kalynova
  • E. A. Kopelovich
  • A. G. Luchinin
  • I. V. Plotnikov
  • M. D. Proyavin
  • M. M. Troitskiy
  • V. V. KholoptsevEmail author
Article

We describe a series of gyrotron facilities developed at the Institute of Applied Physics of the Russian Academy of Sciences for studying physical processes during interaction of millimeter-wave electromagnetic radiation and matter. This paper presents the universal principle of designing such systems on the basis of a facility having an output radiation power of 5 kW at a frequency of 24 GHz. The main components of the facility and their technical parameters are described. Design of high-efficiency radiation sources and radiation transmission lines for various research applications is a sophisticated radiophysical problem, and the need for long-term stable operation with automatic adjustment of the parameters of the generation regime requires unique engineering solutions. Application of multimode electrodynamic devices in the radiation transmission line allows one to treat materials with significantly different dielectric properties, in particular, heat them up to temperatures of about (and exceeding) 2000°C. The vacuum-tight working chamber of the facility is a high-Q untuned cavity resonator having a volume of about 0.1 m3, in which microwave heating of items with characteristic dimensions of more than 10 cm can be performed. The automatic control system of the facility ensures its reliable and long-term failure-free operation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yu.V.Bykov and V. E. Semenov, in: A.V.Gaponov-Grekhov and V. L.Granatstein, eds., Applications of High-Power Microwaves, Artech House, Norwood (1994), p. 319.Google Scholar
  2. 2.
    Yu.V. Bykov, S.V. Egorov, A.G. Eremeev, et al., J. Mater. Proc. Technol., 214, No. 2, 210 (2014).CrossRefGoogle Scholar
  3. 3.
    Yu.V. Bykov, S.V. Egorov, A.G. Eremeev, et al., Materials, 9, 684 (2016).ADSCrossRefGoogle Scholar
  4. 4.
    S. V. Egorov, Yu. V. Bykov, A. G. Eremeev, et al., Radiophys. Quantum Electron., 59, Nos. 8–9, 690 (2016).Google Scholar
  5. 5.
    M.Mahmoud, G. Link, J. Jelonnek, and M.Thumm, EPJ Web Conf., 149, 02007 (2017).Google Scholar
  6. 6.
    A. L. Vikharev, A. M. Gorbachev, A. V.Kozlov, et al., Diamond Rel. Mater., 15, 502 (2006).ADSCrossRefGoogle Scholar
  7. 7.
    A. V.Vodopyanov, S.V.Golubev, D.A.Mansfeld, et al., Rev. Sci. Instrum., 82, 063503 (2011).Google Scholar
  8. 8.
    H. W. Zhao, W. Lu, X. Z. Zhang, et al., Rev. Sci. Instrum., 83, 02A320 (2012).CrossRefGoogle Scholar
  9. 9.
    Yu.Bykov, A. Eremeev, M.Glyavin, et al., IEEE Trans. Plasma Sci., 32, No. 1, 67 (2004).ADSCrossRefGoogle Scholar
  10. 10.
    E. A. Soluyanova, Yu. V. Bykov, A. V.Chirkov, et al., in: Proc. 8th Int. Workshop “Strong Microwaves and Terahertz Waves: Sources and Applications,” July 9–16, 2011, Nizhny Novgorod, p. 133.Google Scholar
  11. 11.
    A.Tsvetkov, A. Eremeev, V.Kholoptsev, et al., in: Proc. 42 Int. Conf. on Infrared, Millimeter, and Terahertz Waves, August 27–September 1, 2017, Cancún, p. 8067065.Google Scholar
  12. 12.
    S. V. Samsonov, G.G. Denisov, I.G.Gachev, et al., IEEE Trans. Electron Devices, 59, 2250 (2012).ADSCrossRefGoogle Scholar
  13. 13.
    Yu.V. Bykov, S.V. Egorov, A.G. Eremeev, et al., Radiophys. Quantum Electron., (in press).Google Scholar
  14. 14.
    E. A.Kopelovich, A.U.Novikov, A.G.Razumov, et al., in: Proc. 8th IEEE Int. Vacuum Electronics Conf., May 15–17, 2007, Kitakyushu, Japan, p. 339.Google Scholar
  15. 15.
    A. Bogdashov, G. Denisov, and G.Kalynova, in: J. L. Hirshfield and M. I.Petelin, eds., Quasi-Optical Control of Intense Microwave Transmission, Springer, Dordrecht (2005), p. 15. Google Scholar
  16. 16.
    H. D. Kimrey and M.A. Janney, in: Mater. Res. Soc. Symp. Proc., Vol. 124, Microwave Processing of Materials (1988), p. 367. Google Scholar
  17. 17.
    L. A.Vainshtein, Electromagnetic Waves [in Russian], Radio i Svyaz’, Moscow (1988).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Yu. V. Bykov
    • 1
  • A. G. Eremeev
    • 1
  • M. Yu. Glyavin
    • 1
  • G. G. Denisov
    • 1
  • G. I. Kalynova
    • 1
  • E. A. Kopelovich
    • 1
  • A. G. Luchinin
    • 1
  • I. V. Plotnikov
    • 1
  • M. D. Proyavin
    • 1
  • M. M. Troitskiy
    • 1
  • V. V. Kholoptsev
    • 1
    Email author
  1. 1.Institute of Applied Physics of the Russian Academy of SciencesNizhny NovgorodRussia

Personalised recommendations