Advertisement

Radiophysics and Quantum Electronics

, Volume 61, Issue 10, pp 741–751 | Cite as

Influence of the Choice of Boundary Conditions on the Distribution of the Electric Field in Models of the Global Electric Circuit

  • N. A. DenisovaEmail author
  • A. V. Kalinin
Article
  • 10 Downloads

We obtain a new analytical representation of the solution for the classical model of the Roble—Hays global electric circuit, where the connection between the values of the electric potential and the current at magnetically conjugate points of the upper boundary of the atmosphere is allowed for in the boundary conditions. Using this representation, we analyze the influence of various boundary conditions at the upper boundary of the atmosphere on the potential distribution and present an estimate of perturbations of the electric field by thunderstorm sources at magnetically conjugate points.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. A. Mareev, Phys. Usp., 53, No. 5, 504 (2010).ADSCrossRefGoogle Scholar
  2. 2.
    S. V. Anisimov and E.A.Mareev, Izv. Phys. Solid Earth, 44, No. 10, 760 (2008).ADSCrossRefGoogle Scholar
  3. 3.
    V. N. Morozov, Mathematical Modeling of Atmospheric Electric Processes Allowing for the Influence of Aerosol Particles and Radioactive Substances [in Russian], Russian State Hydrometeorological Univ., St. Petersburg (2011).Google Scholar
  4. 4.
    S. S. Davydenko and A. E. Mareev, J. Geophys. Res., 109, No. D11, D11103 (2004).ADSCrossRefGoogle Scholar
  5. 5.
    A. J. G. Baumgaertner, J.P.Thayer, R.R.Neely, and G. Lucas, J. Geophys. Res. Atmos., 118, No. 16, 9221 (2013).ADSCrossRefGoogle Scholar
  6. 6.
    V. Bayona, N. Flyer, G.M. Lucas, and A. J.G. Baumgaertner, Geosci. Model Dev., 8, No. 10, 3007 (2015).ADSCrossRefGoogle Scholar
  7. 7.
    J. Jánský and V.P.Pasko, J. Geophys. Res. Space Phys., 120, No. 12, 10654 (2015).Google Scholar
  8. 8.
    G. M. Lucas, A. J. G. Baumgaertner, and J.P.Thayer, J. Geophys. Res. Atmos., 120, No. 23, 12054 (2015).Google Scholar
  9. 9.
    V. V. Denisenko, M. J. Rycroft, and R. G. Harrison, Surveys Geophys., 40, No. 1, 1 (2018).ADSCrossRefGoogle Scholar
  10. 10.
    P. B. Hays and R.G.Roble, J. Geophys. Res., 84, No. A7, 3291 (1979).ADSCrossRefGoogle Scholar
  11. 11.
    A. V. Kalinin, N.N. Slyunyaev, E.A.Mareev, and A. A. Zhidkov, Izv. Atmos. Ocean. Phys., 50, No. 3, 314 (2014).CrossRefGoogle Scholar
  12. 12.
    N. N. Slyunyaev, E. A. Mareev, A.V.Kalinin, and A. A. Zhidkov, J. Atmos. Sci., 71, No. 11, 4382 (2014).ADSCrossRefGoogle Scholar
  13. 13.
    A. V. Kalinin and N.N. Slyunyaev, J. Math. Anal. Appl., 450, No. 1, 112 (2017).MathSciNetCrossRefGoogle Scholar
  14. 14.
    T. Ogawa, J. Geophys. Res., 90, No. D4, 5951 (1985).ADSCrossRefGoogle Scholar
  15. 15.
    M. Abramowitz and I.A. Stegun (eds.), Handbook of Mathematical Functions, Dover, New York (1972).Google Scholar
  16. 16.
    V. S. Vladimirov, Equations of Mathematical Physics [in Russian], Nauka, Moscow (1981).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.N. I. Lobachevsky State University of Nizhny NovgorodNizhny NovgorodRussia
  2. 2.Institute of Applied Physics of the Russian Academy of SciencesNizhny NovgorodRussia

Personalised recommendations