Advertisement

Radiophysics and Quantum Electronics

, Volume 61, Issue 8–9, pp 623–632 | Cite as

The Role of a Thick Soliton in the Dynamics of the Soliton Gas Within the Framework of the Gardner Equation

  • E. G. DidenkulovaEmail author
  • E. N. Pelinovsky
Article
  • 8 Downloads

We study the statistical moments of the soliton gas (mean field, variance, skewness, and kurtosis), which is described within the framework of the Gardner equation with negative cubic nonlinearity. The influence of the limiting (thick or table-like) soliton on the statistical moments of the soliton gas is considered. It is shown to be substantial if the thick-soliton intensity is comparable with that of the moderate-amplitude solitons.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. R. Osborne, Nonlinear Ocean Waves and the Inverse Scattering Transform, Academic Press, Oxford (2010).zbMATHGoogle Scholar
  2. 2.
    B. G. Konopelchenko, Inv. Probl., 7, 739 (1991).ADSCrossRefGoogle Scholar
  3. 3.
    G. Fu and H.-E. Tam, J. Math. Anal. Appl., 330, 989 (2007).MathSciNetCrossRefGoogle Scholar
  4. 4.
    A. M. Wazwaz, Commun. Nonlin. Sci. Numer. Simulat., 12, No. 8, 1395 (2007).ADSCrossRefGoogle Scholar
  5. 5.
    M. S. Ruderman, T. Talipova, and E. Pelinovsky, J. Plasma Phys., 74, No. 5, 639 (2008).ADSCrossRefGoogle Scholar
  6. 6.
    S. A. El-Tantawy, E. I. El-Awady, and R. Schlickeiser, Astrophys. Space Sci., 360, 49 (2015).ADSCrossRefGoogle Scholar
  7. 7.
    S. A. El-Tantawy, Astrophys Space Sci., 361, 164 (2016).ADSCrossRefGoogle Scholar
  8. 8.
    R. Grimshaw, E. Pelinovsky, T. Talipova, et al., J. Phys. Oceanogr., 34, 2774 (2004).ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    R. Grimshaw, E. Pelinovsky, and T. Talipova, Surv. Geophys., 28, No. 4, 273 (2007).ADSCrossRefGoogle Scholar
  10. 10.
    R. D. Pingree and G. T. Mardell, Progr. Oceanogr., 14, 413 (1985).CrossRefGoogle Scholar
  11. 11.
    A. L. New and R. D. Pingree, Deep-Sea Res., 39, 1521 (1992).ADSCrossRefGoogle Scholar
  12. 12.
    T. P. Stanton and L. A. Ostrovsky, Geophys. Res. Lett., 25, No. 14, 2695 (1998).ADSCrossRefGoogle Scholar
  13. 13.
    E. N. Pelinovsky, E. G. Shurgalina, and A. A. Rodin, Izvestiya, Atmos. Ocean. Phys., 51, No. 5, 530 (2015).ADSCrossRefGoogle Scholar
  14. 14.
    O. Kurkina, E. Rouvinskaya, T. Talipova, et al., Physica D, 333, 222 (2016).ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    T. Talipova, E. Pelinovsky, O. Kurkina, et al., Shock Vibr., 2015, 875619 (2015).Google Scholar
  16. 16.
    L. Ostrovsky, E. Pelinovsky, V. Shrira, et al., Chaos, 25, 097620 (2015).ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    D. S. Agafontsev and V. E. Zakharov, Nonlinearity, 29, No. 11, 3551 (2016).ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    A. I. Dyachenko and V. E. Zakharov, JETP Lett., 88, No. 5, 307 (2008).ADSCrossRefGoogle Scholar
  19. 19.
    N. Akhmediev, J. M. Soto-Crespo, and N. Devine, Phys. Rev. E, 94, 022212 (2016).ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    J. M. Soto-Crespo, N. Devine, and N. Akhmediev, Phys. Rev. Lett., 116, No. 10, 103901 (2016).ADSCrossRefGoogle Scholar
  21. 21.
    A. R. Osborne, E. Segre, and G. Boffetta, Phys. Rev. Lett., 67, 592 (1991).ADSCrossRefGoogle Scholar
  22. 22.
    A. R. Osborne, M. Serio, L. Bergamasco, et al., Physica D, 123, 64 (1998).ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    A. Costa, R. O. Alfred, T. R. Donald, et al., Phys. Rev. Lett., 113, 108501 (2014).ADSCrossRefGoogle Scholar
  24. 24.
    D. Dutykh and E. Pelinovsky, Phys. Lett. A, 378, 3102 (2014).ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    E. N. Pelinovsky, E. G. Shurgalina, A. V. Sergeeva, et al., Phys. Lett. A, 377, Nos. 3–4, 272 (2013).ADSCrossRefGoogle Scholar
  26. 26.
    G. A. El, Chaos, 26, No. 2, 1 (2016).CrossRefGoogle Scholar
  27. 27.
    D. Dutykh, M. Chhay, and F. Fedele, Comput. Math. Math. Phys., 53, No. 2, 221 (2013).MathSciNetCrossRefGoogle Scholar
  28. 28.
    E. N. Pelinovsky and E. G. Shurgalina, Radiophys. Quantum Electron., 57, No. 10, 737 (2014).ADSCrossRefGoogle Scholar
  29. 29.
    E. G. Shurgalina and E. N. Pelinovsky, Dynamics of an Ensemble of Irregular Waves in Near-Shore Area [in Russian], Nizhny Novgorod State Tech. Univ., Nizhny Novgorod (2015).Google Scholar
  30. 30.
    E. Pelinovsky and E. Shurgalina, “KdV soliton gas: Interactions and turbulence,” in: I. S. Pikovsky, N. F. Rulkov, and L. S. Tsimring, eds., Advances in Dynamics, Patterns, Cognition: Challenges in Complexity, Springer, Cham (2017), p. 295.CrossRefGoogle Scholar
  31. 31.
    E. Shurgalina and E. Pelinovsky, Phys. Lett. A, 380, No. 24, 2049 (2016).ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    A. V. Slunyaev and E. N. Pelinovsky, Phys. Rev. Lett., 117, 214501 (2016).ADSCrossRefGoogle Scholar
  33. 33.
    F. Carbone, D. Dutykh, and G. A. El, Europhys. Lett., 113, No. 3, 30003 (2016).CrossRefGoogle Scholar
  34. 34.
    R. Grimshaw, D. Pelinovsky, E. Pelinovsky, and E. Slunyaev, Chaos, 12, No. 4, 1070 (2002).ADSMathSciNetCrossRefGoogle Scholar
  35. 35.
    A. V. Slyunyaev and E. N. Pelinovski, JETP, 89, No. 1, 173 (1999).ADSCrossRefGoogle Scholar
  36. 36.
    K. A. Gorshkov and I. A. Soustova, Radiophys. Quantum Electron., 44, Nos. 5–6, 465 (2001).CrossRefGoogle Scholar
  37. 37.
    K. A. Gorshkov, I. A. Soustova, A. V. Ermoshkin, and N. V. Zaytseva, Radiophys. Quantum Electron., 55, No. 5, 344 (2012).ADSCrossRefGoogle Scholar
  38. 38.
    E. N. Pelinovskii and A. V. Slyunyaev, JETP Lett., 67, No. 9, 655 (1998).ADSCrossRefGoogle Scholar
  39. 39.
    A. V. Slyunyaev, JETP, 92, No. 3, 529 (2001).ADSCrossRefGoogle Scholar
  40. 40.
    E. G. Shurgalina, Radiophys. Quantum Electron., 60, No. 9, 703 (2017).ADSCrossRefGoogle Scholar
  41. 41.
    E. G. Shurgalina, Fluid Dyn., 53, No. 1, 59 (2018).MathSciNetCrossRefGoogle Scholar
  42. 42.
    B. Fronberg, A Practical Guide to Pseudospectral Method, Cambridge Univ. Press, Cambridge (1998).Google Scholar
  43. 43.
    E. G. Shurgalina, E. N. Pelinovsky, and K. A. Gorshkov, Moscow Univ. Phys. Bull., 72, No. 5, 441 (2017).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Applied Physics of the Russian Academy of SciencesNizhny NovgorodRussia
  2. 2.Nizhny Novgorod State Technical University n.a. R.E. AlekseevNizhny NovgorodRussia

Personalised recommendations