Advertisement

Radiophysics and Quantum Electronics

, Volume 61, Issue 8–9, pp 614–622 | Cite as

Multistability of Spiking Regimes in a Model of a Laser with Delayed-Feedback

  • E. V. GrigorievaEmail author
  • S. A. Kaschenko
Article
  • 8 Downloads

We use the methods of asymptotic analysis to obtain finite-dimensional maps, whose dynamics determines the dynamics of relaxation oscillations in a laser model with optoelectronic feedback. The coexistence of cycles and chaotic attractors is demonstrated. Switching of spiking regimes by pulsed disturbance of pumping in a certain oscillation phase is discussed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Terrien, B. Krauskopf, G. R. Neil, et al., Phys. Rev. A, 96, No. 4, 043863 (2017).ADSCrossRefGoogle Scholar
  2. 2.
    P. Ashwin, J. Creaser, and K. Tsaneva-Atanasova, Phys. Rev. E, 96, No. 5, 052309 (2017).ADSCrossRefGoogle Scholar
  3. 3.
    G. Ansmann, K. Lehnertz, and U. Feudel, Phys. Rev. X, 6, No. 1, 011030 (2016).Google Scholar
  4. 4.
    O. D’Huys, T. Jungling, and W. Kinzel, Phys. Rev. E, 90, No. 3, 032918 (2014).ADSCrossRefGoogle Scholar
  5. 5.
    A. N. Pisarchik and U. Feudel, Phys. Reports, 540, No. 4, 167 (2014).ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    V. N. Chizhevsky, E. V. Grigorieva, and S. A. Kaschenko, Opt. Commun., 133, No. 1, 187 (1997).ADSGoogle Scholar
  7. 7.
    I. A. Khovanov, N. A. Khovanova, E. V. Grigorieva, et al., Phys. Rev. Lett., 96, No. 8, 083903 (2006).ADSCrossRefGoogle Scholar
  8. 8.
    K. Yadav, N. K. Kamal, and M. D. Shrimali, Phys. Rev. E, 95, No. 4, 042215 (2017).ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    G. Giacomelli, M. Calzavara, and F. T. Arecchi, Opt. Commun., 74, Nos. 1–2, 97 (1989).ADSCrossRefGoogle Scholar
  10. 10.
    Y. Yao, X. Jian, and M. Wiercigroch, Phys. Rev. E, 965, No. 3, 032205 (2017).ADSGoogle Scholar
  11. 11.
    S. Leng, L. Wei, and J. Kurths, Sci. Rep., 6, 21449 (2016).ADSCrossRefGoogle Scholar
  12. 12.
    E. V. Grigorieva and S. A. Kaschenko, Asymptotic Representation of Relaxation Oscillations in Lasers, Springer, Basel (2017).CrossRefzbMATHGoogle Scholar
  13. 13.
    E. V. Grigorieva and S. A. Kaschenko, Doklady Math., 95, No. 3, 282 (2017).MathSciNetCrossRefGoogle Scholar
  14. 14.
    E. V. Grigorieva and S. A. Kaschenko, Opt. Commun., 407, 9 (2018).ADSCrossRefGoogle Scholar
  15. 15.
    Ya. I. Khanin, Fundamentals of Laser Dynamics [in Russian], Nauka, Moscow (1999).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Belarus State Economic UniversityMinskBelarus
  2. 2.Yaroslavl State UniversityYaroslavlRussia

Personalised recommendations