Advertisement

Radiophysics and Quantum Electronics

, Volume 61, Issue 8–9, pp 603–613 | Cite as

Switching of Subterahertz Waves Within a Duration Range of Ten Orders of Magnitude

  • M. L. KulyginEmail author
  • G. G. Denisov
  • E. A. Novikov
  • A. P. Fokin
  • I. A. Litovsky
Article
  • 11 Downloads

We consider nanosecond subterahertz waveguide switches based on a 3D resonator with an active element made of a semiconductor, whose conductivity is controlled by a laser. Recently discovered possibilities to use these switches to obtain pulses with very long durations (up to tens of seconds) along with nanosecond pulses in one and the same device prototype are discussed. Switching with no distortion of the coherent radiation of promising subterahertz gyrotrons, which have powers of about several watts and pulse durations of up to ten seconds are demonstrated experimentally. The theoretical estimate of limiting powers of the switched subterahertz waves, which was proposed earlier, is confirmed and generalized. For this purpose, we perform a measurement of the powers by reducing it to a trivial measurement of the power of radiation of an industrial IR laser. Improvement of the resonance characteristics of the developed switch after switching several sequential long subterahertz pulses has been revealed. Most probably, it is due to “burning-off” of microscopic manufacturing defects and the approach of the actual frequency-amplitude characteristic to the calculated one. It has been predicted theoretically and partially confirmed experimentally that it is not possible to disable the switch being in the fundamental equilibrium state upon switching arbitrarily high powers of subteraheratz waves near the resonance band.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. E. Vorobyev, ed., Photoelectric Phenomena in Semiconductors and Size-Quantized Structures, Nauka, St. Petersburg (2001).Google Scholar
  2. 2.
    L. I. Katz and A.A. Safonov, Interaction of Electromagnetic Microwave Oscillations with Plasma of Charge Carriers in a Semiconductor, Saratov Univ. Publ., Saratov (1979).Google Scholar
  3. 3.
    A. W. Pang, S. Bensmida, C. D. Gamlath, and M. J. Cryan, IET Microwaves, Antennas & Propag., 12, No. 7, 1060 (2018).CrossRefGoogle Scholar
  4. 4.
    G. G. Denisov, Vl. V. Kocharovsky, and M. L. Kulygin, Bull. Rus. Acad. Sci. Phys., 73, No. 1, 91 (2009).CrossRefGoogle Scholar
  5. 5.
    M. L. Kulygin, G. G. Denisov, and Vl. V. Kocharovsky, J. Infrared Millim. Terahertz Waves, 31, No. 1, 31 (2010).Google Scholar
  6. 6.
    M. L. Kulygin, G. G. Denisov, and Yu. V. Rodin, Tech. Phys. Lett., 37, No. 4, 368 (2011).ADSCrossRefGoogle Scholar
  7. 7.
    M. Kulygin and G. Denisov, J. Infrared Millim. Terahertz Waves, 33, No. 6, 638 (2012).CrossRefGoogle Scholar
  8. 8.
    M. L. Kulygin, V. I. Belousov, G. G. Denisov, et al., Radiophys. Quantum Electron., 57, No. 7, 509 (2014).ADSCrossRefGoogle Scholar
  9. 9.
    M. Kulygin, G. Denisov, K. Vlasova, et al., J. Infrared Millim. Terahertz Waves, 36, No. 9, 845 (2015).CrossRefGoogle Scholar
  10. 10.
    M. Kulygin, G. Denisov, K. Vlasova, et al., Rev. Sci. Instrum., 87, 014704 (2016).ADSCrossRefGoogle Scholar
  11. 11.
    M. Kulygin, G. Denisov, S. Shubin, et al., IEEE Trans. Terahertz Sci. Technol., 7, No. 2, 225 (2017).ADSCrossRefGoogle Scholar
  12. 12.
    M. L. Kulygin, G. G. Denisov, S. H. Salahetdinov, et al., EPJ Web of Conf., 149, 04030 (2017).CrossRefGoogle Scholar
  13. 13.
    M. L. Kulygin, G. G. Denisov, and A. P. Fokin, et al., EPJ Web Conf., 195, 02005 (2018).Google Scholar
  14. 14.
    R. A. Wind, M. J. Duijvestijn, C. van der Lugt, et al., Progress Nucl. Magn. Reson. Spectrosc., 17, 33 (1985).CrossRefGoogle Scholar
  15. 15.
    S. D. Gedney, IEEE Trans. Antennas Propag., 44, No. 12, 1630 (1996).ADSCrossRefGoogle Scholar
  16. 16.
    M. L. Kulygin, Phys.-Math. Cand. Diss. Theses “Numerical Modeling of Three-Dimensional Multi-Mode Electrodynamic Systems of Electronic Microwave Devices” [in Russian], IAP RAS, Nizhny Novgorod (2006).Google Scholar
  17. 17.
    H. R. Phillip and H. Ehrenreich, Phys. Rev., 129, 1550 (1963).ADSCrossRefGoogle Scholar
  18. 18.
    M. L. Kulygin, G. G. Denisov, A. V. Chirkov, and S. V. Kuzikov, J. Infrared Millim. Terahertz Waves, 27, No. 4, 591 (2006).ADSCrossRefGoogle Scholar
  19. 19.
    G. G. Denisov and M. L. Kulygin, J. Infrared Millim. Terahertz Waves, 26, No. 3, 341 (2005).ADSCrossRefGoogle Scholar
  20. 20.
    M. Yu. Glyavin, V. E. Zapevalov, and M. L. Kulygin, Radiophys. Quantum Electron., 42, No. 11, 962 (1999).ADSCrossRefGoogle Scholar
  21. 21.
    M. Glyavin, M. Kulygin, M. Moiseev, et al., International University Conference Proc. Electronics and Radiophysics of Ultra-High Frequencies, 113 (1999).Google Scholar
  22. 22.
    M. Thumm, in: R. A. Cairns and A.D. R. Phelps, ed., Generation and Application of High Power Microwaves, Institute of Physics Publ., Bristol and Philadelphia (1997), p. 121.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • M. L. Kulygin
    • 1
    Email author
  • G. G. Denisov
    • 1
    • 2
  • E. A. Novikov
    • 1
  • A. P. Fokin
    • 1
  • I. A. Litovsky
    • 2
  1. 1.Institute of Applied Physics of the Russian Academy of SciencesNizhny NovgorodRussia
  2. 2.N. I. Lobachevsky State University of Nizhny NovgorodNizhny NovgorodRussia

Personalised recommendations