Advertisement

Radiophysics and Quantum Electronics

, Volume 61, Issue 8–9, pp 574–588 | Cite as

Evaluation of the Atmospheric Minor Species Measurements: a Priori Statistical Constraints Based on Photochemical Modeling

  • M. V. BelikovichEmail author
  • M. Yu. Kulikov
  • A. A. Nechaev
  • A. M. Feigin
Article
  • 5 Downloads

The paper discusses the features of the previously published method of the Bayesian statistical evaluation of simultaneous satellite measurements of the minor species OH, HO2, and O3 at the mesospheric altitudes. These features are due to the introduction of a priori constraints on true concentration values (masked by measurement noise), which are determined by the condition of photochemical equilibrium of the species. The method is based on the probabilistic view of the satellite measurement process where the true concentrations of OH, HO2, and O3 are considered as random variables. In such a technique, we construct the a posteriori probability density of these variables and compare its statistical characteristics with the initial measurement data. It is shown that there is ambiguity in the construction of the a posteriori probability density of OH, HO2, and O3, which is due to the different ways of limiting transition from the three-dimensional probability distribution to the surface one. The ambiguity significantly affects the statistical means and leads to an inevitable systematic error. We present the main options for choosing the probability density, depending on the type of the transition. To estimate the systematic error, we tested the method by using artificial noisy model data on OH, HO2, and O3 that simulate perfect (unbiased) measurements. It is shown that choosing a patch transition leads to the least systematic error. Applying the method to MLS/Aura data of July 2005 confirmed the conclusion made earlier that the satellite measurements of the HO2 concentration have a significant bias greatly exceeding the systematic error of the method. This leads, in particular, to a significant error in the localization of the concentration maximum of this component at the mesospheric altitudes.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. Chameides, J. Geophys. Res., 80, No. 36, 4989 (1975).ADSCrossRefGoogle Scholar
  2. 2.
    D. H. Stedman, W. Chameides, and J. O. Jackson, Geophys. Res. Lett ., 2, No. 1, 22 (1975).ADSCrossRefGoogle Scholar
  3. 3.
    N. Sobanski, M. J. Tang, J. Thieser, et al., Atmos. Chem. Phys., 16, 4867 (2016).ADSCrossRefGoogle Scholar
  4. 4.
    J. A. Pyle, A. M. Zavody, J. E. Harries, and P. H. Moffat, Nature, 305, 690 (1983).ADSCrossRefGoogle Scholar
  5. 5.
    G. Wetzel, H. Oelhaf, O. Kirner, et al., Atmos. Chem. Phys., 12, 6581 (2012).ADSCrossRefGoogle Scholar
  6. 6.
    M. Marchand, S. Bekki, F. Lefevre, and A. Hauchecorne, Geophys. Res. Lett ., 34, L24809 (2007).ADSCrossRefGoogle Scholar
  7. 7.
    W. F. J. Evans and E. J. Llewellyn, J. Geophys. Res., 78, 323 (1973).ADSCrossRefGoogle Scholar
  8. 8.
    M. G. Mlynczak, L. A. Hunt, B. T. Marshall, et al., J. Geophys. Res., 119, 3516 (2014).Google Scholar
  9. 9.
    A. K. Smith, D. R. Marsh, M. G. Mlynczak, and J. C. Mast, J. Geophys. Res., 115, D18309 (2010).ADSCrossRefGoogle Scholar
  10. 10.
    D. E. Siskind, D. R. Marsh, M. G. Mlynczak, et al., Geophys. Res. Lett ., 35, L13809 (2008).ADSCrossRefGoogle Scholar
  11. 11.
    A. R. Douglass, C. H. Jackman, and R. S. Stolarski, J. Geophys. Res., 94, No. D7, 9862 (1989).ADSCrossRefGoogle Scholar
  12. 12.
    P. J. Rasch, B. A. Boville, and G. P. Brasseur, J. Geophys. Res., 100, No. D5, 9041 (1995).ADSCrossRefGoogle Scholar
  13. 13.
    P. Tulet, A. Grini, R. J. Griffin, and S. Petitcol, J. Geophys. Res., 111, D23208 (2006).ADSCrossRefGoogle Scholar
  14. 14.
    M. Y. Kulikov, A. A. Nechaev, M. V. Belikovich, et al., Atmos. Chem. Phys., 18, 7453 (2018).ADSCrossRefGoogle Scholar
  15. 15.
    L. Millán, S. Wang, N. Livesey, et al., Atmos. Chem. Phys., 15, 2889 (2015).ADSCrossRefGoogle Scholar
  16. 16.
    W. Lee, H. Kanamori, P. Jennings, and C. Kisslinge, Intern. Handbook of Earthquake & Engineering Seismology, Part A, Vol. 81A, Academic Press, Cambridge, Massachusetts (2003).Google Scholar
  17. 17.
  18. 18.
    G. Sonnemann, C. Kremp, A. Ebel, and U. Berger, Atmos. Environ., 32, 3157 (1998).ADSCrossRefGoogle Scholar
  19. 19.
    J. de Grandpre, S. R. Beagley, V. I. Fomichev, et al., J. Geophys. Res. Atmos., 105, 26475 (2000).ADSCrossRefGoogle Scholar
  20. 20.
    J. F. Scinocca, N. A. McFarlane, M. Lazare, et al., Atmos. Chem. Phys., 8, 7055 (2008).ADSCrossRefGoogle Scholar
  21. 21.
    U. Körner and G. R. Sonnemann, J. Geophys. Res. Atmos., 106, 9639 (2001).ADSCrossRefGoogle Scholar
  22. 22.
    M. Grygalashvyly, G. R. Sonnemann, and P. Hartogh, Atmos. Chem. Phys., 9, 2779 (2009).ADSCrossRefGoogle Scholar
  23. 23.
    M. Grygalashvyly, E. Becker, and G. R. Sonnemann, J. Geophys. Res., 116, D18302 (2011).ADSCrossRefGoogle Scholar
  24. 24.
    M. Grygalashvyly, E. Becker, and G. R. Sonnemann, Space Sci. Rev., 168, 333 (2012).ADSCrossRefGoogle Scholar
  25. 25.
    P. Hartogh, C. Jarchow, G. R. Sonnemann, and M. Grygalashvyly, J. Geophys. Res., 109, D18303 (2004).ADSCrossRefGoogle Scholar
  26. 26.
    P. Hartogh, G. R. Sonnemann, M. Grygalashvyly, and Ch. Jarchow, Adv. Space Res., 47, 1937 (2011).ADSCrossRefGoogle Scholar
  27. 27.
    G. R. Sonnemann, M. Grygalashvyly, P. Hartogh, and C. Jarchow, Adv. Space Res., 38, 2402 (2006).ADSCrossRefGoogle Scholar
  28. 28.
    G. R. Sonnemann, P. Hartogh, C. Jarchow, et al., Adv. Space Res., 40, 846 (2007).ADSCrossRefGoogle Scholar
  29. 29.
    M. Y. Kulikov, M. V. Belikovich, M. Grygalashvyly, et al., Ann. Geophys., 35, 677 (2017).ADSCrossRefGoogle Scholar
  30. 30.
    M. V. Belikovich, M. Y. Kulikov, M. Grygalashvyly, et al., Adv. Space Res., 61, No. 1, 426 (2018).ADSCrossRefGoogle Scholar
  31. 31.
    M. Yu. Kulikov, M. V. Belikovich, N. Grygalashvyly, et al., J. Geophys. Res. Atmos., 123, No. 6, 3228 (2018).ADSCrossRefGoogle Scholar
  32. 32.
    J. B. Burkholder, S. P. Sander, J. Abbatt, et al., Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation No. 18, JPL Publication 15-10, Jet Propulsion Laboratory, Pasadena (2015).Google Scholar
  33. 33.
    M. Yu. Kulikov, D. N. Mukhin, and A. M. Feigin, Radiophys. Quantum Electron., 52, No. 9, 616 (2009).ADSCrossRefGoogle Scholar
  34. 34.
    A. A. Nechaevm T. S. Ermakova, and M. Yu. Kulikov, Radiophys. Quantum Electron., 59, No. 7, 546 (2016).ADSCrossRefGoogle Scholar
  35. 35.
    C. D. Rodgers, Inverse Methods for Atmospheric Sounding: Theory and Practice, World Scientific Publishing Co., Sigapore (2000).CrossRefzbMATHGoogle Scholar
  36. 36.
    S. Chib and E. Greenberg, Understanding the Metropolis-Hastings Algorithm, The American Statistician, 49, No. 4, 327 (1995).Google Scholar
  37. 37.
  38. 38.
    S. Wang, H. Pickett, N. Livesey, and W. Read, MLS/Aura Level 2 Hydroperoxy (HO 2 ) Mixing Ratio V004, Goddard Earth Sciences Data and Information Services Center, Greenbelt (2015), doi: https://doi.org/10.5067/AURA/MLS/DATA2013.Google Scholar
  39. 39.
    S. Wang, N. Livesey, and W. Read MLS/Aura Level 2 Hydroxyl (OH) Mixing Ratio V004, Goddard Earth Sciences Data and Information Services Center, Greenbelt (2015), doi: https://doi.org/10.5067/AURA/MLS/DATA2018.Google Scholar
  40. 40.
    M. Schwartz, L. Froidevaux, N. Livesey, and W. Read, MLS/Aura Level 2 Ozone (O 3 ) Mixing Ratio V004, Goddard Earth Sciences Data and Information Services Center, Greenbelt (2015), doi: https://doi.org/10.5067/AURA/MLS/DATA2017.Google Scholar
  41. 41.
    S. Solomon, D. W. Rusch, R. J. Thomas, and R. S. Eckman, Geophys. Res. Lett ., 10, 249 (1983).ADSCrossRefGoogle Scholar
  42. 42.
    M. E. Summers, R. R. Conway, D. E. Siskind, et al., Science, 277, 1967 (1997).CrossRefGoogle Scholar
  43. 43.
    D. E. Siskind, M. H. Stevens, C. R. Englert, and M. G. Mlynczak, J. Geophys. Res. Atmos., 118, 195 (2013).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • M. V. Belikovich
    • 1
    Email author
  • M. Yu. Kulikov
    • 1
  • A. A. Nechaev
    • 1
  • A. M. Feigin
    • 1
  1. 1.Institute of Applied Physics of the Russian Academy of SciencesNizhny NovgorodRussia

Personalised recommendations