Advertisement

Radiophysics and Quantum Electronics

, Volume 61, Issue 8–9, pp 545–552 | Cite as

Evaluation of Wind Wave Growth Parameters Basing on Spectral Fluxes

  • S. I. BadulinEmail author
  • V. V. Geogdzhaev
Article
  • 10 Downloads

We describe the main regimes of the wind wave dynamics, which correspond to the continuity of the fluxes of the wave momentum, energy, and action, on the basis of the wave turbulence theory. Basing on the experimental data about the wave growth, the energy flux into the largescale range (inverse cascade within the wave turbulence theory) is evaluated. The intensity of the direct energy cascade to the short-wave range is estimated basing on experimental parameterization of the wind wave frequency spectra, which corresponds to the Kolmogorov—Zakharov spectrum E(ω) ∝ ω−4. The obtained estimates show that intensity of the direct cascade exceeds that of the inverse one by two orders of magnitude. An approximate solution for the direct energy cascade is found as a perturbation of the classical Zakharov—Zaslavsky solution for the inverse cascade with a zero energy flux. The results are discussed in correlation with the development of spectral wind wave models.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Cavaleri, J.-H. G. M. Alves, F. Ardhuin, et al., Progr. Ocean., 75, 603 (2007).CrossRefGoogle Scholar
  2. 2.
    K. Hasselmann, J. Fluid Mech., 12, 481 (1962).ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    V. E. Zakharov and N. N. Filonenko, Dokl. Akad. Nauk SSSR, 170, 6, 1292 (1966).Google Scholar
  4. 4.
    V. E. Zakharov and M. M. Zaslavsky, Izv. Akad. Nauk SSSR, Ser. Fiz. Atm. Okeana, 18, 9, 970 (1982).Google Scholar
  5. 5.
    V. V. Geogdzhaev and V. E. Zakharov, JETP Lett., 106, No. 184, 3, 184 (2017).Google Scholar
  6. 6.
    S. Kitaigoroskii, Izv. Akad. Nauk SSSR, Ser. Geofiz., 1, 105 (1962).Google Scholar
  7. 7.
    Y. Toba, J. Oceanogr. Soc. Japan, 29, 209 (1973).CrossRefGoogle Scholar
  8. 8.
    J. A. Battjes, T. J. Zitman, and L. H. Holthuijsen, J. Phys. Oceanogr., 17, No. 8, 1288 (1987).ADSCrossRefGoogle Scholar
  9. 9.
    K. Hasselmann, T. P. Barnett, E. Bouws, et al., Dtsch. Hydrogh. Zeitschr. Suppl., 12, No. A8 (1973).Google Scholar
  10. 10.
    M. A. Donelan, J. Hamilton, and W. H. Hui, Phil. Trans. Roy. Soc. Lond. A, 315, 509 (1985).ADSCrossRefGoogle Scholar
  11. 11.
    G. S. Golitsyn, Izv. Akad. Nauk SSSR, Ser. Fiz. Atm. Okeana, 46, 1, 10 (1982).Google Scholar
  12. 12.
    S. I. Badulin, A. N. Pushkarev, D. Resio, and V. E. Zakharov, Nonlin. Proc. Geophys., 2, 891 (2005).ADSCrossRefGoogle Scholar
  13. 13.
    S. I. Badulin, A. V. Babanin, D. Resio, and V. E. Zakharov, J. Fluid Mech., 591, 339 (2007).ADSCrossRefGoogle Scholar
  14. 14.
    S. I. Badulin, A. V. Babanin, D. Resio, and V. E. Zakharov, Proc. IUTAM Symposium, Moscow, 25–30 August 2006, Springer, New York, 6, 175 (2008).Google Scholar
  15. 15.
    E. Gagnaire-Renou, M. Benoit, and S. I. Badulin, J. Fluid Mech., 669, 178 (2011).ADSCrossRefGoogle Scholar
  16. 16.
    V. E. Zakharov, Procedia IUTAM. 2018. V. 26. IUTAM Symposium Wind Waves, September4–8, 2017, London, p. 43.Google Scholar
  17. 17.
    V. E. Zakharov and S. I. Badulin, Doklady Earth Sci., 440, 1440 (2011).ADSCrossRefGoogle Scholar
  18. 18.
    V. E. Zakharov, Eur. J. Mech. B/Fluids, 18, 327 (1999).ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    A. Pushkarev and V. Zakharov, Ocean Modelling, 103, 18 (2016).ADSCrossRefGoogle Scholar
  20. 20.
    K. Hasselmann, D. B. Ross, and P. Müller, J. Phys. Oceanogr., 6, 200 (1976).ADSCrossRefGoogle Scholar
  21. 21.
    Y. Toba, J. Oceanogr. Soc. Japan, 28, 109 (1972).CrossRefGoogle Scholar
  22. 22.
    V. E. Zakharov and M. M. Zaslavsky, Izv. Akad. Nauk SSSR, Ser. Fiz. Atm. Okeana, 19, No. 4, 406 (1983).Google Scholar
  23. 23.
    S. Abdalla and L. Cavaleri, J. Geophys. Res., 107, No. C7, 3080 (2002).ADSCrossRefGoogle Scholar
  24. 24.
    R. L. Snyder, F. W. Dobson, J. A. Elliot, and R. B. Long, J. Fluid Mech., 102, 1 (1981).ADSCrossRefGoogle Scholar
  25. 25.
    W. J. Plant, J. Geophys. Res., 87, No. C3, 1961 (1982).ADSCrossRefGoogle Scholar
  26. 26.
    R. W. Stewart, Boundary-Layer Meteorol., 6, 151 (1974).ADSCrossRefGoogle Scholar
  27. 27.
    M. A. Donelan and W. J. Pierson Jr., J. Geophys. Res., 92, No. C5, 4971 (1987).ADSCrossRefGoogle Scholar
  28. 28.
    S. V. Hsiao and O. H. Shemdin, J. Geophys. Res., 88, No. C14, 9841 (1983).ADSCrossRefGoogle Scholar
  29. 29.
    V. E. Zakharov and M. M. Zaslavsky, Izv. Akad. Nauk USSR, Ser. Fiz. Atm. Okeana, 19, No. 3, 282 (1983).Google Scholar
  30. 30.
    S. L. Weber, J. Phys. Oceanogr., 24, 1388 (1994).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.P. P. Shirshov Institute of Oceanology of the Russian Academy of SciencesMoscowRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations