Advertisement

Radiophysics and Quantum Electronics

, Volume 61, Issue 8–9, pp 537–544 | Cite as

Geodynamo Models

  • M. Yu. ReshetnyakEmail author
Article
  • 25 Downloads

We consider typical approaches to modeling of geodynamo processes in the liquid core of the Earth. Some features of magnetohydrodynamic turbulence under rapid rotation conditions are presented. On the example of net helicities, it is shown how rapid rotation facilitates the generation of a large-scale magnetic field and how the mechanism of the inverse effect of the magnetic field on the flow under geostrophy conditions is implemented. The arguments, based on the symmetry properties, in favor of the existence of a connection between the rapid rotation and the inversion frequency, as well as a number of other large-scale characteristics of the dynamo system, are given.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. H. Roberts and E. M. King, Rep. Progr. Phys., 76, No. 9, 096801 (2013).ADSCrossRefGoogle Scholar
  2. 2.
    D. D. Sokolov, R. A. Stepanov, and P. G. Frick, Phys. Usp., 57, No. 3, 292 (2014).ADSCrossRefGoogle Scholar
  3. 3.
    F. Krause and K. H. Rädler, Mean-Field Magnetohydrodynamics and Dynamo Theory, Pergamon Press, Oxford (1990).zbMATHGoogle Scholar
  4. 4.
    S. I. Braginsky, Geomagn. Aéron., 18, No. 2, 340 (1978).ADSGoogle Scholar
  5. 5.
    A. A. Ruzmaikin, D. D. Sokolov, and A. M. Shukurov, Magnetic Fields of the Galaxies [in Russian], Nauka, Moscow (1988).CrossRefGoogle Scholar
  6. 6.
    E. P. Popova, Phys. Usp., 59, No. 6, 513 (2016).ADSCrossRefGoogle Scholar
  7. 7.
    G. A. Glatzmaier, J. Comp. Phys., 55, No. 3, 461 (1984).ADSCrossRefGoogle Scholar
  8. 8.
    G. A. Glatzmaier and P. H. Roberts, Phys. Earth Planet. Int., 91, Nos. 1–3, 63 (1995).ADSCrossRefGoogle Scholar
  9. 9.
    U. R. Christensen, J. Aubert, and G. Hulot, Earth Planet. Sci. Lett ., 296, Nos. 3–4, 487 (2010).ADSCrossRefGoogle Scholar
  10. 10.
    U. Christensen, P. Olson, and G. A. Glatzmaier, Geophys. J. Int., 138, No. 2, 393 (1999).ADSCrossRefGoogle Scholar
  11. 11.
    U. R. Christensen and J. Aubert, Geophys. Int., 166, No. 1, 97 (2006).ADSCrossRefGoogle Scholar
  12. 12.
    S. I. Braginsky and P. H. Roberts, Geophys. Astrophys. Fluid Dynam., 79, Nos. 1–4, 1 (1995).ADSCrossRefGoogle Scholar
  13. 13.
    C. A. Jones, Phil. Trans. R. Soc. Lond. A, 358, No. 1768, 873 (2000).ADSCrossRefGoogle Scholar
  14. 14.
    F. Cattaneo, T. Emonet, and N. Weiss, Astroph. J ., 588, 1183 (2003).ADSCrossRefGoogle Scholar
  15. 15.
    M. Yu. Reshetnyak, Izv. Phys. Solid Earth, 43, No. 8, 642 (2007).ADSCrossRefGoogle Scholar
  16. 16.
    M. Yu. Reshetnyak, Rus. J. Earth Sci ., 18, ES1002 (2018).Google Scholar
  17. 17.
    R. Simitev, “Convection and magnetic field generation in rotating spherical fluid shells” (Ph.D. thesis), Univ. Bayreuth, Bayreuth (2004).Google Scholar
  18. 18.
    M. Yu. Reshetnyak, Vych. Met. Progr. Nov. Vych. Tekhn., 12, 77 (2011).Google Scholar
  19. 19.
    M. Yoshida and A. Kageyama, Geophys. Res. Lett ., 31, L12609 (2004).ADSGoogle Scholar
  20. 20.
    P. Hejda and M. Reshetnyak, Stud. Geophys. Geod., 47, No. 1, 147 (2003).CrossRefGoogle Scholar
  21. 21.
    P. Hejda and M. Reshetnyak, Nonlin. Proc. Geophys., 15, 873 (2008).ADSCrossRefGoogle Scholar
  22. 22.
    P. Hejda and M. Reshetnyak, Phys. Earth Planet. Int., 177, Nos. 3–4, 152 (2009).ADSCrossRefGoogle Scholar
  23. 23.
    H. A. Rose and P. I. Sulem, J. Physique, 39, 441 (1978).MathSciNetCrossRefGoogle Scholar
  24. 24.
    R. H. Kraichnan and D. Montgomery, Rep. Prog. Phys., 43, 547 (1980).ADSCrossRefGoogle Scholar
  25. 25.
    A. P. Kazantsev, J. Exp. Theor. Phys., 26, 1031 (1968).ADSGoogle Scholar
  26. 26.
    M. Meneguzzi and A. Pouquet, J. Fluid Mech., 205, 297 (1989).ADSCrossRefGoogle Scholar
  27. 27.
    G. Rüdiger and R. Hollerbach, The Magnetic Universe: Geophysical and Astrophysical Dynamo Theory, John Wiley and Sons, Hoboken (2006).Google Scholar
  28. 28.
    A. Sheyko, C. C. Finlay, and A. Jackson, Nature, 539, No. 7630, 551 (2016).ADSCrossRefGoogle Scholar
  29. 29.
    E. N. Parker, Astrophys. J ., 122, 293 (1955).ADSCrossRefGoogle Scholar
  30. 30.
    M. Yu. Reshetnyak, Geomagn. Aéron., 52, No. 3, 398 (2012).ADSCrossRefGoogle Scholar
  31. 31.
    A. Brandenburg and K. Subramanian, Phys. Rep., 417, 1 (2005).ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    P. Hejda and M. Reshetnyak, Geophys. Astrophys. Fluid Dynam., 104, Nos. 5–6, 491 (2010).ADSCrossRefGoogle Scholar
  33. 33.
    M. Yu. Reshetnyak, Izv. Phys. Solid Earth, 50, No. 4, 467 (2014).ADSCrossRefGoogle Scholar
  34. 34.
    A. Pouquet, U. Frisch, and J. Leorat, J. Fluid Mech., 77, 321 (1976).ADSCrossRefGoogle Scholar
  35. 35.
    M. Yu. Reshetnyak, Rus. J. Earth Sci ., No. 3, ES1001 (2013).Google Scholar
  36. 36.
    P. L. Olson, R. S. Coe, P. E. Driscoll, et al., Phys. Earth Planet. Int., 180, Nos. 1–2, 66 (2010).ADSCrossRefGoogle Scholar
  37. 37.
    M. Yu. Reshetnyak and P. Hejda, Open J. Geol ., 2B, No. 3, 55 (2013).ADSCrossRefGoogle Scholar
  38. 38.
    M. Yu. Reshetnyak and V. E. Pavlov, Geomagn. Aéron., 56, No. 1, 110 (2016).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.O. Yu. Shmidt Institute of Physics of the EarthRussian Academy of SciencesMoscowRussia
  2. 2.N. V. Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave PropagationMoscowRussia

Personalised recommendations