Advertisement

Radiophysics and Quantum Electronics

, Volume 61, Issue 7, pp 500–515 | Cite as

Nonlinear Acoustic Effects in Rod Resonators with Rigid Boundaries

  • V. E. Nazarov
  • S.B. Kiyashko
Article

We theoretically study nonlinear acoustic effects (amplitude-dependent loss, resonant-frequency shift, and the second-harmonic generation) and determine the thresholds of parametric generation of subharmonic oscillations at fractional frequencies in the rod resonators with rigid boundaries and various nonlinearity types (elastic, hysteretic, different-modulus, etc.).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L.K. Zarembo and V. A.Krasil’nikov, Introduction to Nonlinear Acoustics [in Russian], Nauka, Moscow (1966).Google Scholar
  2. 2.
    L.K. Zarembo and V. A.Krasil’nikov, Sov. Phys. Usp., 13, 778 (1970).Google Scholar
  3. 3.
    O.V. Rudenko and S. I. Soluyan, Theoretical Foundation of Nonlinear Acoustics, Plenum, New York (1977).CrossRefGoogle Scholar
  4. 4.
    K. A. Naugol’nykh and L.A.Ostrovsky, Nonlinear Wave Processes in Acoustics, Cambridge University Press, Cambridge (1998).Google Scholar
  5. 5.
    O.V. Rudenko, Akust. Zh., 29, No. 3, 398 (1983).Google Scholar
  6. 6.
    V. G. Andreev, O.A.Vasil’eva, E.A. Lapshin, and O. V. Rudenko, Akust. Zh., 31, No. 1, 12 (1985).Google Scholar
  7. 7.
    A. Korpel and L. Adler, Appl. Phys. Lett., 7, No. 4, 106 (1965).ADSCrossRefGoogle Scholar
  8. 8.
    L. Adler and M. A. Breaseale, J. Acoust. Soc. Am., 48, No. 5, part 2, 1077 (1970).Google Scholar
  9. 9.
    P. H. Rogers, J. Acoust. Soc. Am., 52, No. 1, 429 (1972).ADSCrossRefGoogle Scholar
  10. 10.
    L. A. Ostrovsky, I. A. Papilova, and A. M. Sutin, JETP Lett., 15, No. 8, 322 (1972).ADSGoogle Scholar
  11. 11.
    A. I. Eller, J. Acoust. Soc. Am., 53, No. 3, 758 (1973).ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    L. K. Zarembo and O.Yu. Serdobol’skaya, Akust. Zh., 20, No. 5, 726 (1974).ADSGoogle Scholar
  13. 13.
    J. Nai-chyuan, J. Acoust. Soc. Am., 57, No. 6, part 2, 1357 (1975).Google Scholar
  14. 14.
    H. Mahon, E. Brun, M. Luukkala, and W.G. Proctor, Phys. Rev. Lett., 19, No. 3, 430 (1967).ADSCrossRefGoogle Scholar
  15. 15.
    L. A. Ostrovsky, I. A. Papilova, and A. M. Sutin, Zh. Tekh. Fiz., 43, No. 10, 2213 (1973).Google Scholar
  16. 16.
    I.A. Soustova and A.M. Sutin, Akust. Zh., 21, No. 6, 953 (1975).Google Scholar
  17. 17.
    L. A. Ostrovsky and I. A. Soustova, Akust. Zh., 22, No. 5, 742 (1976).Google Scholar
  18. 18.
    L.A. Ostrovsky, I.A. Soustova, and A.M. Sutin, Acustica, 39, No. 5, 298 (1978).Google Scholar
  19. 19.
    V. E. Nazarov, L. A. Ostrovsky, I. A. Soustova, and A. M. Sutin, Phys. Earth Planetary Interiors, 50, No. 1, 65 (1988).ADSCrossRefGoogle Scholar
  20. 20.
    V.E. Nazarov, V.Yu. Zaitsev, and I.Yu. Belyaeva, Acta Acust. United Ac., 88, No. 1, 40 (2002).Google Scholar
  21. 21.
    V. E. Nazarov and A. V. Radostin, Acoust. Phys., 51, No. 2, 230 (2005).ADSCrossRefGoogle Scholar
  22. 22.
    L.D. Landau and E. M. Lifshitz, Theory of Elasticity, Butterworth-Heinemann, Oxford (1986).zbMATHGoogle Scholar
  23. 23.
    L. A. Ostrovsky and A. I. Potapov, Introduction to the Theory of Modulated Waves [in Russian], Fizmatlit, Moscow (2003).Google Scholar
  24. 24.
    V. E. Nazarov, L. A. Ostrovsky, I. A. Soustova, and A. M. Sutin, Akust. Zh., 34, No. 3, 491 (1988).Google Scholar
  25. 25.
    S. Asano, J. Phys. Soc. Jap., 29, No. 4, 952 (1970)ADSCrossRefGoogle Scholar
  26. 26.
    A. B. Lebedev, Phys. Solid State., 41, 1105 (1999).Google Scholar
  27. 27.
    V. E. Nazarov, A. V. Radostin, L.A. Ostrovsky, and I. A. Soustova, Acoust. Phys., 49, No. 3, 344 (2003).ADSCrossRefGoogle Scholar
  28. 28.
    V. E. Nazarov and A. M. Sutin, Akust. Zh., 35, No. 4, 711 (1989).Google Scholar
  29. 29.
    M. A. Isakovich, General Acoustics [in Russian], Nauka, Moscow (1978).Google Scholar
  30. 30.
    D. V. Sivukhin, General Course of Physics. Vol. 3. Electricity [in Russian], Fizmatlit, Moscow Physical and Technical Institute, Moscow (2004).Google Scholar
  31. 31.
    V. E. Nazarov and A. V. Radostin, Acoust. Phys., 52, No. 4, 440 (2006).ADSCrossRefGoogle Scholar
  32. 32.
    V. E. Nazarov, Acoust. Phys., 57, No. 2, 192 (2011).ADSCrossRefGoogle Scholar
  33. 33.
    V. E. Nazarov and L. A. Ostrovsky, Akust. Zh., 36, No. 1, 106 (1990).Google Scholar
  34. 34.
    A. V.Radostin, V.E.Nazarov, and S. B.Kiyashko, Wave Motion, 50, 191 (2013).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Applied Physics of the Russian Academy of SciencesNizhny NovgorodRussia

Personalised recommendations