Advertisement

Radiophysics and Quantum Electronics

, Volume 61, Issue 7, pp 491–499 | Cite as

Detection of a Crack and Determination of Its Position in a Plate by the Nonlinear Modulation Method Using Lamb Waves

  • V. V. Kazakov
Article
  • 4 Downloads

Features of detection of a single crack in a plate are experimentally studied by the nonlinear acoustic modulation method provided that single defects (cracks and cavities) are located between a low-frequency (tens of kilohertz) ultrasonic transducer of Lamb waves and a high-frequency (units of megahertz) ultrasonic transducer. It is shown that using modulation of the defect characteristics by a sequence of phase-inverted Lamb waves, by the level of modulation of the high-frequency wave reflected from the defect one can determine its type (a crack or a cavity). Changing step by step the interaction region of low-frequency and high-frequency waves by varying a delay between their radiation, it is possible to study selectively the nonlinear acoustic characteristics of the defects arranged in series on the location path. Based on the obtained results, we created a combined transducer which scans a defect and modulates its characteristics simultaneously in the preset area and which is suitable for moving it by hand on the surface of a plate for seeking hidden cracks.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    O.V. Rudenko, Defektoskopiya, No. 8, 24 (1993).Google Scholar
  2. 2.
    A. M. Sutin and V. E. Nazarov, Radiophys. Quantum Electron., 38, Nos. 3–4, 109 (1995).ADSGoogle Scholar
  3. 3.
    Y. Zheng, R. Gr. Maev, and I. Yu. Solodov, Canad. J. Phys., 77, No. 12, 927 (1999).ADSCrossRefGoogle Scholar
  4. 4.
    V.Yu. Zaitsev, V. E. Nazarov, and V. I. Talanov, Phys. Usp., 49, No. 1, 89 (2006).ADSCrossRefGoogle Scholar
  5. 5.
    A. S. Korotkov and A.M. Sutin, Acoustic Lett., 18, No. 4, 59 (1994).Google Scholar
  6. 6.
    P. B. Nagy, Ultrasonics, 36, 375 (1998).CrossRefGoogle Scholar
  7. 7.
    P. Johnson, Material World, 7, No. 9, 544 (1999).Google Scholar
  8. 8.
    D. N. Donskoy and A. M. Sutin, J. Intellig. Mater. Syst. Struct., 9, 765 (1999).CrossRefGoogle Scholar
  9. 9.
    V. V. Kazakov, A. M. Sutin, and P. A. Johnson, Appl. Phys. Lett ., 81, No. 4, 646 (2002).ADSCrossRefGoogle Scholar
  10. 10.
    O.V. Rudenko, Phys. Usp., 49, No. 1, 69 (2006).ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    I.Yu. Solodov, N.Krohn, and G.Busse, Ultrasonics, 40, 621 (2002).CrossRefGoogle Scholar
  12. 12.
    L. Pieczonka, A. Klepka, A. Martowicz, et al., Opt. Engineering, 55, No. 1, 011005 (2016).Google Scholar
  13. 13.
    V. V. Kazakov, Rus. J. Nondestr. Testing, 42, No. 11, 709 (2006).CrossRefGoogle Scholar
  14. 14.
    V. V. Kazakov, Rus. J. Nondestr. Testing, 42, No. 12, 773 (2006).CrossRefGoogle Scholar
  15. 15.
    A. L. Matveev, V. E. Nazarov, V. Yu. Zaitsev, et al., Mir. Nerazrush. Kontr., No. 4, 65 (2004).Google Scholar
  16. 16.
    L. Straka, Y. Yagodzinskyy, M. Landa, and H. Hanninen, NDT&E Int ., 41, 554 (2008).CrossRefGoogle Scholar
  17. 17.
    E. M. Ballad, S.Yu.Vezirov, K.Pfleiderer, et al., Ultrasonics, 42, 1031 (2004).CrossRefGoogle Scholar
  18. 18.
    I. Solodov, D. Doring, and G. Busse, J. Mech. Engineering, 57, No. 3, 169 (2011).CrossRefGoogle Scholar
  19. 19.
    K.Yamanaka, Y.Ohara, S.Yamamoto, et al., Proc. 4th Pan American Conf. Non-Destructive Testing, 22–26 October 2007, Buenos Aires, Art. No. 92.Google Scholar
  20. 20.
    V.K.Chillara and C. J. Lissenden, Ultrasonics, 5, 1553 (2014).CrossRefGoogle Scholar
  21. 21.
    D. Dionysopoulos, G.-P.M. Fierro, M. Meo, and F. Ciampa, NDT&E Int ., 95, 9 (2018).CrossRefGoogle Scholar
  22. 22.
    Q. Yu, O. Obeidat, and X. Han, NDT&E Int., 100, 153 (2018).CrossRefGoogle Scholar
  23. 23.
    L.Pieczonka, P. Ukowski, A.Klepka, et al., Smart Mater. Struct ., 23 (2014). 105021.Google Scholar
  24. 24.
    V.Yu. Zaitsev, L. A. Matveev, and A. L. Matveyev, NDT&E Int ., 42, 622 (2009).CrossRefGoogle Scholar
  25. 25.
    V. E. Nazarov, Akust. Zh., 40, No. 3, 459 (1994).Google Scholar
  26. 26.
    J. G. Sessler and V.Weiss, US Patent No. 3867836, MKI G 01 N 29/04, “Crack detection apparatus and method,” claimed: March 26, 1973, published: February 25, 1975, NKI 73/67.5.Google Scholar
  27. 27.
    D. Donskoy, A. Sutin, and A. Ekimov, NDT&E Int ., 34, 231 (2001).CrossRefGoogle Scholar
  28. 28.
    H. J. Lim, B. Song, B. Park, and H. Sohn, NDT&E Int ., 73, 8 (2015).CrossRefGoogle Scholar
  29. 29.
    N.Krohn, R. Stoessel, and G.Busse, Ultrasonics, 40, 633 (2002).CrossRefGoogle Scholar
  30. 30.
    P. Duffour, M. Morbidini, and P. Cawley, J. Acoust. Soc. Am., 119, No. 3, 1463 (2006).ADSCrossRefGoogle Scholar
  31. 31.
    V.Yu. Zaitsev, L. A. Matveev, A. L. Matveyev, and W. Arnold, Acoust. Phys., 54, No. 3, 398 (2008).ADSCrossRefGoogle Scholar
  32. 32.
    V.Yu. Zaitsev, L. A. Matveev, and A. L. Matveyev, NDT&E Int ., 44, 21 (2011).CrossRefGoogle Scholar
  33. 33.
    M.Hong, Z. Su, Q.Wang, et al., Ultrasonics, 54, 770 (2014).CrossRefGoogle Scholar
  34. 34.
    Y.-K. An, em Int. J., Solids Struct., 62., 134 (2015).Google Scholar
  35. 35.
    W.T.Yost and J.H.Cantrell, US Patent No. 5736642, MKI G 01 N 29/06, “Nonlinear ultrasonic scanning to detect material defects,” claimed: January 8, 1997, published: April 7, 1998, NKI 73/602.Google Scholar
  36. 36.
    D. M. Donskoy and A. M. Sutin, US Patent No. 6301967, MKI G 01 N 29/00, “Method and apparatus for acoustic detection and location of defects in structures or ice on structures,” claimed: January 28, 1999, published: October 16, 2001, NKI 73/579.Google Scholar
  37. 37.
    E. S.Erilin, A. L.Matveyev, V.E. Nazarov, et al., RF Patent No. 2219538, MKI G 01 N 29/00, “Method for detection of cracks in a solid” [in Russian], claimed: March 1, 2002, published: December 20, 2003, BI 35.Google Scholar
  38. 38.
    V. V.Kazakov, RF Patent No. 2280863, MKI G 01 N 29/04, “Nonlinear ultrasonic method for detection of cracks and their location in a solid and a device for its implementation” [in Russian], claimed: February 14, 2005, published: July 27, 2006, BI 21.Google Scholar
  39. 39.
    I.N.Didenkulov, N.V.Kurichkin, A.A. Stromkov, and V.V.Chernov, Methods of Acoustic Diagnostics of Inhomogeneous Media [in Russian], Inst. Appl. Phys., Rus. Acad. Sci., Nizhny Novogorod (2002), p. 188.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Applied Physics of the Russian Academy of SciencesNizhny NovgorodRussia

Personalised recommendations