Advertisement

Radiophysics and Quantum Electronics

, Volume 61, Issue 7, pp 478–490 | Cite as

Evolution of Narrow-Band Noise Beams for Large Acoustic Reynolds Numbers

  • S. N. Gurbatov
  • M. S. Deryabin
  • D. A. Kasyanov
  • V. V. Kurin
Article
  • 11 Downloads

We consider propagation of intense acoustic beams having a noise temporal structure at the initial aperture. The evolution of the probability distribution and the wave spectrum at a discontinuous stage of propagation is studied experimentally when the field on the radiator axis represents a sequence of discontinuities with universal behavior between them. It has been shown, both theoretically and experimentally, that in this case the field spectrum retains its shape determined by the probability distribution of the frequency of the initial wave.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. M. Blackstock, in: Proc. Third Interagency Symposium on University Res. Trans. Noise, University of Utah, Salt Lake City (1975), p. 389.Google Scholar
  2. 2.
    B. J. Tester and C. L. Morfey, J. Sound Vibration, 46, No. 1, 79 (1976).Google Scholar
  3. 3.
    C. L. Morfey and G. P. Howell, Am. Inst. Aeron. Astron. J, 19, 986 (1981).CrossRefGoogle Scholar
  4. 4.
    M. J. Crocker, ed., Handbook of Noise and Vibration Control, John Wiley and Sons, Hoboken (2007).zbMATHGoogle Scholar
  5. 5.
    K. L. Gee, T. B. Gabrielson, A. A. Atchley, and V. W. Sparrow, Am. Inst. Aeron. Astron. J., 43, No. 6, 1398 (2005).CrossRefGoogle Scholar
  6. 6.
    K. L. Gee, V. W. Sparrow, M. M. James, et al., J. Acoust. Soc. Am., 123, No. 6, 4082 (2008).ADSCrossRefGoogle Scholar
  7. 7.
    D. F. Pernet and R. C. Payne, J. Sound Vib., 17, No. 3, 383 (1971).ADSCrossRefGoogle Scholar
  8. 8.
    F. M. Pestorius and D.T. Blackstock, in: L. Bjorno, ed., Finite-Amplitude Wave Effects in Fluids, IPC Sci. Technol. Press, Ltd., Guildford (1973), p. 24.Google Scholar
  9. 9.
    K. Sakagami, S. Aoki, I. M. Chou, et al., J. Acoust. Soc. Japan. E, 3, No. 1, 43 (1982).CrossRefGoogle Scholar
  10. 10.
    L. Bjorno and S. N. Gurbatov, Akust. Zh., 31, No. 3, 303 (1985).ADSGoogle Scholar
  11. 11.
    M. Muhlestein and K. Gee, in: Proc. Meetings Acoust., 161-ASA, 23–27 May, 2011, Vol. 12, 045002.Google Scholar
  12. 12.
    B. O. Reichman, M. B. Muhlestein, K. L. Gee, et al., J. Acoust. Soc. Am., 139, No. 3, 1390 (2016).ADSCrossRefGoogle Scholar
  13. 13.
    O.V. Rudenko and S. I. Soluyan, Theoretical Fundamentals of Nonlinear Acoustics [in Russian], Mauka, Moscow (1975).Google Scholar
  14. 14.
    N. S. Bakhvalov, Ya. M. Zhileikin, and E. A. Zaboloyskaya, Nonlinear Theory of Sound Beams [in Russian], Nauka, Moscow (1982).Google Scholar
  15. 15.
    O.V. Rudenko, Acoust. Phys., 56, No. 4, 457 (2010).ADSCrossRefGoogle Scholar
  16. 16.
    O.V. Rudenko, Sov. Phys. Usp., 29, No. 7, 620 (1986).ADSCrossRefGoogle Scholar
  17. 17.
    J. Bec and U. Frisch, in: M. Lesieur, A. Yaglom, and F. David, eds., New Trends in Turbulence, Springer-EDP Sciences, Berlin (2001), p. 341.Google Scholar
  18. 18.
    S. N. Gurbatov and O. V. Rudenko, in: M. F. Hamilton and D. T. Blackstock, eds., Nonlinear Acoustics, Academic Press, New York (1998), p. 377.Google Scholar
  19. 19.
    W. A. Woyczynski, Burgers-KPZ Turbulence. Gottingen Lectures, Springer–Verlag, Berlin (1998).CrossRefGoogle Scholar
  20. 20.
    J. Bec and K. Khanin, Phys. Reports, 447, Nos. 1–2, 1 (2007).Google Scholar
  21. 21.
    S. N. Gurbatov, O. V. Rudenko, and A. I. Saichev, Waves and Structures in Nonlinear Nondispersive Media: General Theory and Applications to Nonlinear Acoustics, Springer–Verlag, Berlin (2011).zbMATHGoogle Scholar
  22. 22.
    S. Gurbatov, M. Deryabin, D. Kasyanov, and V. Kurin, J. Sound Vibration, 439, 208 (2019).ADSCrossRefGoogle Scholar
  23. 23.
    O. V. Rudenko, S. N. Gurbatov, and C. M. Hedberg, Nonlinear Acoustics Through Problems and Examples, Trafford Publishing, Bloomington (2010).Google Scholar
  24. 24.
    O. V. Rudenko and A. S. Chirkin, Akust. Zh., 20, No. 2, 297 (1974).Google Scholar
  25. 25.
    S. N. Gurbatov, and A. N. Malakhov, Akust. Zh., 23, No. 4, 569 (1977).Google Scholar
  26. 26.
    S. N. Gurbatov and L.G. Shepelevich, Radiophys. Quantum Electron., 21, No. 11, 1131 (1978).ADSCrossRefGoogle Scholar
  27. 27.
    S. N. Gurbatov, M. S. Deryabin, D. A. Kasyanov, and V. V. Kurin, Radiophys. Quantum Electron., 59, No. 10, 794 (2016).ADSCrossRefGoogle Scholar
  28. 28.
    S. N. Gurbatov, M. S. Derybin, D. A. Kas’yanov, and V. V. Kurin, Acoust. Phys., 63, No. 3, 260 (2017).ADSCrossRefGoogle Scholar
  29. 29.
    V. G. Andreev, A. A. Karabutov, and O. V. Rudenko, Akust. Zh., 31, No. 4, 423 (1985).ADSGoogle Scholar
  30. 30.
    O. Sapozhnikov, V. Khokhlova, and D. Cathino, J. Acoust. Soc. Am., 115, No. 5, 1982 (2004).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • S. N. Gurbatov
    • 1
  • M. S. Deryabin
    • 1
    • 2
  • D. A. Kasyanov
    • 2
  • V. V. Kurin
    • 1
  1. 1.N. I. Lobachevsky University of Nizhny NovgorodNizhny NovgorodRussia
  2. 2.Institute of Applied Physics of the Russian Academy of SciencesNizhny NovgorodRussia

Personalised recommendations