Advertisement

Radiophysics and Quantum Electronics

, Volume 61, Issue 7, pp 467–477 | Cite as

The Role of the Effect of Shadowing of Some Wavy Regions by Other Wavy Regions in the Formation of an Image of Snell’s Window

  • A. A. Molkov
Article
  • 4 Downloads

The shadowing of some regions of a wavy water surface by other regions can significantly influence the backscattered signal not only in the problem of remote monitoring of a water reservoir at grazing angles (e.g., in radar), but also in the problems of underwater vision. In this work, we present the results of a theoretical study of this phenomenon with respect to the model of underwater imaging of the sky (Snell’s window) near the image boundary. The numerical-simulation method is used to develop the statistically mean image of Snell’s window, which allows for the shadowing effects, and the corrected formula of the estimate of a wave parameter, namely, the water-surface slope variance, is obtained using the value of blurring of the boundary of Snell’s window.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. A. Molkov and L. S. Dolin, Izvestiya, Atmos. Oceanic Phys., 49, No. 5, 567 (2013).ADSCrossRefGoogle Scholar
  2. 2.
    A. A. Molkov, L. S.Dolin, I.A.Kapustin, et al., Proc. SPIE, 9999, 99991D (2016).Google Scholar
  3. 3.
    L. S. Dolin and A. A. Molkov, Radiophys. Quantum Electron., 60, No. 1, 12 (2017).ADSCrossRefGoogle Scholar
  4. 4.
    D. Antoine, A. Morel, E. Leymarie, et al., J. Atmos. Oceanic Technol., 30, No. 1, 74 (2013).ADSCrossRefGoogle Scholar
  5. 5.
    S. Sabbah, A. Barta, J. G’al, et al., J. Opt. Soc. Am. A, 23, No. 8, 1978 (2006).ADSCrossRefGoogle Scholar
  6. 6.
    P. Beckmann, IEEE Trans. Antennas Propagat., 13, No. 3, 384 (1965).ADSCrossRefGoogle Scholar
  7. 7.
    F. G. Bass and I.M. Fuks, Wave Scattering from Statistically Rough Surfaces, Pergamon Press, Oxford (1979).Google Scholar
  8. 8.
    L. Shaw, IEEE Trans. Antennas Propagat., 14, 253 (1966).ADSCrossRefGoogle Scholar
  9. 9.
    R. A. Brockelman and T. Hagfors, IEEE Trans. Antennas Propagat., 14, No. 5, 621 (1966).ADSCrossRefGoogle Scholar
  10. 10.
    R. J. Wagner, J. Acoust. Soc. Am., 41, No. 1, 138 (1967).ADSCrossRefGoogle Scholar
  11. 11.
    B.G. Smith, IEEE Trans. Antennas Propagat., 15, 668 (1967).ADSCrossRefGoogle Scholar
  12. 12.
    C. S. Cox and W.H.Munk, J. Opt. Soc. Am., 44, 838 (1954).ADSCrossRefGoogle Scholar
  13. 13.
    P. J. Welton, K. E. Hawker, and H. G. Frey, J. Acoust. Soc. Am., 54, No. 2, 446 (1973).ADSCrossRefGoogle Scholar
  14. 14.
    L. M. Ricciardi and S. Sato, Signal Proc., 11, No. 4, 339 (1986).Google Scholar
  15. 15.
    C. Bourlier, J. Saillard, and G. Bergine, IEEE Trans. Antennas Propagat., 48, No. 3, 437 (2000).ADSCrossRefGoogle Scholar
  16. 16.
    C. Bourlier, G. Bergine, and J. Saillard, IEEE Trans. Antennas Propagat., 50, No. 3, 312 (2002).ADSCrossRefGoogle Scholar
  17. 17.
    C. Bourlier, G. Bergine, and J. Saillard, Waves. Rand. Med., 12, No. 2, 175 (2002).ADSCrossRefGoogle Scholar
  18. 18.
    C. Bourlier, G. Bergine, and J. Saillard, IEEE Geosci. Remote Sensing Soc., 39, No. 2, 379 (2001).ADSCrossRefGoogle Scholar
  19. 19.
    L. S. Dolin and I.M. Levin, Handbook in the Theory of Underwater Vision [in Russian], Gidrometeoizdat, Leningrad (1991).Google Scholar
  20. 20.
    L. Dolin, G. Gilbert, I. Levin, and A. Luchinin, Theory of Imaging Through Wavy Sea Surface, Inst. Appl. Phys., Nizhny Novgorod (2006).Google Scholar
  21. 21.
    V. L.Weber, “Simulation of the one-dimensional random surface,” Preprint No. 603 [in Russian], Inst. Appl. Phys., Nizhny Novgorod (2002).Google Scholar
  22. 22.
    A. A. Molkov and L. S. Dolin, Izvestiya, Atmos. Oceanic Phys., 48, No. 5, 552 (2012).ADSCrossRefGoogle Scholar
  23. 23.
    P. A. Hwang, J. Atmos. Oceanic Technol., 14, No. 5, 1174 (1997).ADSCrossRefGoogle Scholar
  24. 24.
    P. A. Hwang, J. Phys. Oceanogr., 30, No. 11, 2753 (2000).ADSCrossRefGoogle Scholar
  25. 25.
    A. A. Molkov, “Underwater Imaging of the Sea Surface as a Source of Information on the Wind Waves and Optical Properties of Water,” Cand. Sci. (Phys.-Math.) Thesis [in Russian], Inst. Appl. Phys., Nizhny Novgorod (2014).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Applied Physics of the Russian Academy of SciencesNizhny NovgorodRussia

Personalised recommendations