Advertisement

Radiophysics and Quantum Electronics

, Volume 61, Issue 6, pp 456–466 | Cite as

Generation of the Second and Fourth Harmonics with Retaining the Three-Dimensional Quasi-Ellipsoidal Distribution of the Laser Pulse Intensity for a Photoinjector

  • S. Yu. Mironov
  • E. I. Gacheva
  • A. K. Potemkin
  • E. A. Khazanov
  • M. A. Krasil’nikov
  • F. Stephan
Article
  • 20 Downloads

We consider the possibility of generating the second and fourth optical harmonics of laser pulses having a central wavelength of 1030 nm with retaining the three-dimensional quasi-ellipsoidal intensity distribution. The presented results of numerical simulation confirm that angular chirping allows one to retain the three-dimensional structure of the intensity distribution and enhance energy conversion. The proposed approach was tested experimentally using non-profiled laser beams. Energy conversion efficiency of 53% and 21% was achieved in the generation of the second and fourth harmonics, respectively.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Bartels, S. Backus, E. Zeek, et al., Nature, 406, No. 6792, 164 (2000).ADSCrossRefGoogle Scholar
  2. 2.
    Y. Silberberg, Annual Rev. Phys. Chem., 60, No. 1, 277 (2009).ADSCrossRefGoogle Scholar
  3. 3.
    I. Will and G.Klemz, Opt. Express, 16, No. 19, 14922 (2008).ADSCrossRefGoogle Scholar
  4. 4.
    S. Y. Mironov, A.K.Potemkin, E. I.Gacheva, et al., Appl. Opt., 55, No. 7, 1630 (2016).ADSCrossRefGoogle Scholar
  5. 5.
    S. Y. Mironov, A.K.Poteomkin, E. I. Gacheva, et al., Laser Phys. Lett., 13, No. 5, 055003 (2016).ADSCrossRefGoogle Scholar
  6. 6.
    M. Krasilnikov, M.Khojoyan, F. Stephan, et al., in: Proc. 35th International Free Electron Laser Conf., August 26–30, 2013, Manhattan, USA, p. 303.Google Scholar
  7. 7.
    I. M.Kapchinskij and V. V. Vladimirskij, in: Proc. 2nd Conf. High Energy Accelerators and Instrumentation, September 14–19, 1959, Geneva, p. 274.Google Scholar
  8. 8.
    E. I. Gacheva, V. V. Zelenogorskii, A. V. Andrianov, et al., Opt. Express, 23, No. 8, 9627 (2015).ADSCrossRefGoogle Scholar
  9. 9.
    V. V. Zelenogorskii, A. V. Andrianov, E. I. Gacheva, et al., Quantum Electron., 44, No. 1, p. 76 (2014).ADSCrossRefGoogle Scholar
  10. 10.
    S. Mironov, E. Gacheva, A. Andrianov, et al., in: Proc. Adv. Photonics, July 27, 2014, Barcelona, JM5A.30.Google Scholar
  11. 11.
    T. Rublack, J.Good, M.Khojoyan, et al., Nucl. Instrum. Methods, 829, 438 (2016).ADSCrossRefGoogle Scholar
  12. 12.
    S.Yu.Mironov, A.V.Andrianov, E. I. Gacheva, et al., Physics—Uspekhi, 60, No. 10, 1039 (2017).Google Scholar
  13. 13.
    E. I. Gacheva and A.K.Potyomkin, Radiophys. Quantum Electron., 58, No. 4, 277 (2015).Google Scholar
  14. 14.
    A.Yariv, Quantum Electronics, Wiley, New York (1989).Google Scholar
  15. 15.
    D. N. Nikogosyan, Nonlinear Optical Crystals: A Complete Survey, Springer-Verlag, New York (2005).Google Scholar
  16. 16.
    J.P.Torres, M. Hendrych, and A.Valencia, Adv. Opt. Photon., 2, No. 3, 319 (2010).ADSCrossRefGoogle Scholar
  17. 17.
    T. B. Razumikhina, L. S.Telegin, A. I.Kholodnykh, and A. S.Chirkin, Kvant. Élektron. Sov. J. Quantum Electron., 14, No. 10, 1358 (1984).CrossRefGoogle Scholar
  18. 18.
    S.A.Akhmanov, V.A.Vysloukh, and A. S.Chirkin, Optics of Femtosecond Laser Pulses [in Russian], Nauka, Moscow (1988).Google Scholar
  19. 19.
    V. G.Dmitriev and L.V.Tarasov, Applied Nonlinear Optics [in Russian], Radio i Svyaz’, Moscow (1982).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • S. Yu. Mironov
    • 1
  • E. I. Gacheva
    • 1
  • A. K. Potemkin
    • 1
  • E. A. Khazanov
    • 1
  • M. A. Krasil’nikov
    • 2
  • F. Stephan
    • 2
  1. 1.Institute of Applied Physics of the Russian Academy of SciencesNizhny NovgorodRussia
  2. 2.Deutsches Elektronen–Synchrotron (PITZ)ZeuthenGermany

Personalised recommendations