Advertisement

Radiophysics and Quantum Electronics

, Volume 61, Issue 6, pp 445–455 | Cite as

Characteristics of Radiation from a Microstrip Antenna on a Substrate Made of a Chiral Metamaterial

  • D. S. Klyuev
  • M.A. Minkin
  • D. V. Mishin
  • A. M. Neshcheret
  • D. P. Tabakov
Article
  • 2 Downloads

We present a method for electrodynamic analysis of a microstrip antenna on a substrate made of a chiral metamaterial. Singular integral representations of the components of the electric field radiated by such an antenna are presented. A singular integral equation with the Cauchy singularity is obtained, which allows determining the function of the current-density distribution over the antenna surface. The dependences of the magnitude and phase of the electric-field components on the coordinates and the radiation patterns of the antenna are calculated. It is shown that the electromagnetic waves radiated by such an antenna have the elliptical polarization.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. Slusar, Pervaya Milya, Nos. 3–4, 44 (2010).Google Scholar
  2. 2.
    N.Engheta and R. W. Ziolkowski, IEEE Trans. Microwave Theory Tech., 53, No. 4, 1535 (2005).Google Scholar
  3. 3.
    S.Yang, L.Wang, and J. Le-Wei Li, in: Proc. 2012 IEEE Int. Workshop on Electromag.: Appl. Student Innovation Competition, August 6–9, 2012, Chengdu, China, p.1.Google Scholar
  4. 4.
    D. Zarifi, H.Oraizi, and M. Soleimani, Prog. Electromag. Res., 123, 337 (2012).Google Scholar
  5. 5.
    V. A. Neganov and O.V.Osipov, Reflecting, Waveguiding, and Radiating Structures with Chiral Elements [in Russian], Radio i Svyaz’, Moscow (2006).Google Scholar
  6. 6.
    I. V. Lindell, A. H. Sihvola, S. A.Tretyakov, and A. J. Viitanen, Electromagnetic Waves in Chiral and Bi-Isotropic Media, Artech House, London (1994).Google Scholar
  7. 7.
    B. Z. Katzenelenbaum, E.N.Korshunova, A.N. Sivov, and A.D. Shatrov, Physics—Uspekhi, 40, No. 11, 1149 (1997).Google Scholar
  8. 8.
    A. Lakhtakia, V.K.Varadan, and V.V.Varadan, Time-Harmonic Electromagnetic Fields in Chiral Media. Lecture Notes in Physics, Springer-Verlag, Berlin–Heidelberg–Boston (1989).Google Scholar
  9. 9.
    I. F. Budagyan, A.A.Koval’chuk, and V.A.Chebyshev, T-Comm: Telekomm. Transport, No. 10, 30 (2012).Google Scholar
  10. 10.
    C. Zebiri, S.Daoudi, F. Benabdelaziz, et al., Int. J. Appl. Electromag. Mechanics, 51, 249 (2016).Google Scholar
  11. 11.
    L.-W. Li, T.-X. Zhao, M.-S. Leong, and T.-S.Yeo, Prog. Electromag. Res., 35, 165 (2002).Google Scholar
  12. 12.
    A. N. Dement’ev, D. S.Klyuev, V. A. Neganov, and Yu.V. Sokolova, Singular and Hypersingular Integral Equations in the Theory of Reflector Antennas and Strip Antennas [in Russian], Radiotekhnika, Moscow (2015).Google Scholar
  13. 13.
    V. A. Neganov, E. I.Nefedov, and G. P.Yarovoy, Strip-Slot Structures in the Microwave and Millimeter-Wave Ranges [in Russian], Fizmatlit, Moscow (1996).Google Scholar
  14. 14.
    V. A. Neganov, D. S.Klyuev, and Yu. V. Sokolova, Radiophys. Quantum Electron., 51, No. 12, 956 (2008).Google Scholar
  15. 15.
    A. N.Tikhonov and V.Ya. Arsenin, Methods of Solving Ill-Posed Problems [in Russian], Nauka, Moscow (1979).Google Scholar
  16. 16.
    A. D. Polyanin and A.V.Manzhirov, Handbook of Integral Equations, CRC Press, Boca Raton (2008).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • D. S. Klyuev
    • 1
  • M.A. Minkin
    • 2
  • D. V. Mishin
    • 1
  • A. M. Neshcheret
    • 2
  • D. P. Tabakov
    • 1
  1. 1.Povolzhskiy State University of Telecommunications and InformaticsSamaraRussia
  2. 2.JSC “Concern Avtomatika”MoscowRussia

Personalised recommendations