Advertisement

Radiophysics and Quantum Electronics

, Volume 61, Issue 6, pp 436–444 | Cite as

Analysis of the Methods of Discrete and Smooth Frequency Tuning in Gyrotrons for Spectroscopy, on the Example of a Generator Operated in the 0.20–0.27 THz Frequency Range

  • N. A. Zavolsky
  • V. E. Zapevalov
  • A. S. Zuev
  • O. P. Plankin
  • A. S. Sedov
  • E. S. Semenov
Article
  • 6 Downloads

We consider the main features of a low-power frequency-tunable gyrotron with an oversized cavity, which is designed for the purposes of nuclear magnetic resonance spectroscopy and other applications and operates in the 0.20–0.27 frequency range producing an output power of 200 W. We study the possibilities of wideband output frequency tuning by exciting a sequence of modes with similar caustics using magnetic-field variations and smooth tuning due to the excitation of modes with a great number of longitudinal variations. Aiming at widening the frequency tuning range, we also analyzed the possibility of smooth frequency tuning determined by controlled variations of the cavity temperature. Specific features of the electron-optical system of such a gyrotron is discussed, along with the possibility of increasing its efficiency by means of single-stage recovery of the residual energy of the electron beam.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M.Yu.Glyavin, G.G. Denisov, V.E. Zapevalov, et al., Phys. Usp., 59, No. 6, 595 (2016).ADSCrossRefGoogle Scholar
  2. 2.
    N.Kumar, U. Singh, T.P. Singh, and A.K. Sinha, J. Fusion Energy, 30, No. 4, 257 (2011).Google Scholar
  3. 3.
    J. H. Booske, R. J.Dobbs, C.D. Joye, et al., IEEE Trans. Electron Devices, 1, No. 1, 54 (2011).Google Scholar
  4. 4.
    L. R. Becerra, G. J.Gerfen, R. J.Temkin, et al., Phys. Rev. Lett., 71, No. 21, 3561 (1993).ADSCrossRefGoogle Scholar
  5. 5.
    V. S.Bajaj, C. T.Farrar, M. K.Hornstein, et al., J. Magnetic Res., 160, 85 (2003).Google Scholar
  6. 6.
    G.S.Nusinovich, M.K.A.Thumm, and M. I. Petelin, J. Infrared, Millimeter, Terahertz Waves, 35, No. 4, 325 (2017).Google Scholar
  7. 7.
    T. Idehara and S.P. Sabchevski, J. Infrared, Millimeter, Terahertz Waves, 33, No. 7, 667 (2012).Google Scholar
  8. 8.
    M.Thumm, A. Arnold, E.Borie, et al., Fusion Eng. Design, 53, 407 (2001).Google Scholar
  9. 9.
    V. E. Zapevalov, A. A. Bogdashov, G. G. Denisov, et al., Radiophys. Quantum Electron., 47, Nos. 5–6, 395 (2004).Google Scholar
  10. 10.
    M.Yu.Glyavin, A.V.Chirkov, G.G. Denisov, et al., Rev. Sci. Instr., 86, No. 5, 054705 (2015).Google Scholar
  11. 11.
    G. S. Nusinovich and R. ´E. ´Erm, Elektron. Tekhn., Ser. I, Electron. SVCh, 8, 55 (1972).Google Scholar
  12. 12.
    N. A. Zavolsky, V.E. Zapevalov, and M. A. Moiseev, Radiophys. Quantum Electron., 44, No. 4, 318 (2001).Google Scholar
  13. 13.
    Sh. E. Tsimring, Electron Beams and Microwave Vacuum Electronics, Wiley-Interscience (2006).Google Scholar
  14. 14.
    O.P. Plankin and E. S. Semenov, Nizhny Novgorod Univ. Bull. Ser. Fizika, 8, 2, 44 (2013).Google Scholar
  15. 15.
    V. E. Zapevalov and O. V. Malygin, Izv. Vyssh. Uchebn. Zaved., Radiofiz., 26, No. 7, 903 (1983).Google Scholar
  16. 16.
    G. S.Nusinovich, R.Pu, O.V. Sinitsyn, et al., IEEE Trans. Plasma Sci., 38, No. 6, 1200 (2010).ADSCrossRefGoogle Scholar
  17. 17.
    A.C.Torrezan, M. A. Shapiro, J.R. Sirigiri, et al., IEEE Trans. Electron Devices, 58, No. 8, 2777 (2011).ADSCrossRefGoogle Scholar
  18. 18.
    M.K. Hornstein, V. S. Bajaj, R. G. Griffin, et al., IEEE Trans. Electron Devices, 52, No. 5, 798 (2005).ADSCrossRefGoogle Scholar
  19. 19.
    M.Yu.Glyavin, G.G. Denisov, V. E. Zapevalov, et al., Radiophys. Quantum Electron., 58, No. 9, 649 (2016).Google Scholar
  20. 20.
    N.P.Venediktov, V.V.Dubrov, V. E. Zapevalov, et al., Radiophys. Quantum Electron., 53, No. 4, 237 (2010).Google Scholar
  21. 21.
    A. Sh. Fix, V. A. Flyagin, A. L. Goldenberg, et al., Int. J. Electron., 57, No. 6, 821 (1984).CrossRefGoogle Scholar
  22. 22.
    K. Sakamoto, M.Tsuneoka, A.Kasugai, et al., Phys. Rev. Lett., 73, No. 26, 3532 (1994).ADSCrossRefGoogle Scholar
  23. 23.
    M.Yu.Glyavin, A.N.Kuftin, N. P.Venediktov, and V. E. Zapevalov, Int. J. Infrared Millimeter Waves, 18, No. 11, 2129 (1997).Google Scholar
  24. 24.
    A. V.Chirkov, G. G. Denisov, A.N.Kuftin, et al., Tech. Phys. Lett., 33, No. 4, 350 (2007).ADSCrossRefGoogle Scholar
  25. 25.
    A. V.Chirkov, G. G. Denisov, A.N.Kuftin, Appl. Phys. Lett., 106, No. 26, 263501 (2015).ADSCrossRefGoogle Scholar
  26. 26.
    V. V. Parshin, Int. J. Infrared Millimeter Waves, 15, No. 2, 339 (1994).ADSCrossRefGoogle Scholar
  27. 27.
    S. N. Vlasov and E. V.Koposova, Radiophys. Quantum Electron., 52, No. 10, 782 (2009).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • N. A. Zavolsky
    • 1
  • V. E. Zapevalov
    • 1
  • A. S. Zuev
    • 1
  • O. P. Plankin
    • 1
  • A. S. Sedov
    • 1
  • E. S. Semenov
    • 1
  1. 1.Institute of Applied Physics of the Russian Academy of SciencesNizhny NovgorodRussia

Personalised recommendations