Advertisement

Radiophysics and Quantum Electronics

, Volume 61, Issue 6, pp 418–425 | Cite as

Acoustic Waves in Media with Quadratically Bimodular Nonlinearity and Linear Dissipation

  • V. E. Nazarov
  • S. B. Kiyashko
  • A. V. Radostin
Article
  • 6 Downloads

We study, both theoretically and numerically, propagation of the longitudinal elastic waves in the media with quadratically bimodular nonlinearity and viscous dissipation. Exact analytical solutions for simple and stationary waves are obtained and numerical solutions for evolution of the initially harmonic waves are given.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. A. Ambartsumyan, Bimodular Theory of Elasticity [in Russian], Nauka, Moscow (1982).Google Scholar
  2. 2.
    A. V. Nikolaev, Izv. Akad. Nauk SSSR, Fiz. Zemli, No. 1, 72 (1979).Google Scholar
  3. 3.
    Y. Benveniste, Int. J. Eng. Sci., 18, No. 6, 815 (1980).CrossRefGoogle Scholar
  4. 4.
    V.P. Maslov and P. P. Mosolov, Prikl. Mat. Mekh., 49, No. 3, 419 (1985).MathSciNetGoogle Scholar
  5. 5.
    V. E. Nazarov and A. M. Sutin, Sov. Phys. Acoust., 35, No. 4, 410 (1989).Google Scholar
  6. 6.
    V. E. Nazarov and L. A. Ostrovsky, Sov. Phys. Acoust., 36, No. 1, 57 (1990).Google Scholar
  7. 7.
    S. N. Gavrilov and G.C. Herman, J. Sound Vibr., 331, No. 20, 4464 (2012).ADSCrossRefGoogle Scholar
  8. 8.
    A. V. Radostin, V. E. Nazarov, and S. B. Kiyashko, Wave Motion, 50, No. 2, 191 (2013).MathSciNetCrossRefGoogle Scholar
  9. 9.
    V. E. Nazarov, A. V. Radostin, and S. B. Kiyashko, Radiophys. Quantum Electron., 58, No. 2, 124 (2015).ADSCrossRefGoogle Scholar
  10. 10.
    V. E. Nazarov and A. V. Radostin, Nonlinear Acoustic Waves in Micro-Inhomogeneous Solids, Wiley, Chichester (2015).Google Scholar
  11. 11.
    O.V. Rudenko, Doklady—Mathematics, 9, No. 3, 703 (2016).CrossRefGoogle Scholar
  12. 12.
    O.V. Rudenko, Doklady—Mathematics, 95, No. 3, 291 (2017).MathSciNetCrossRefGoogle Scholar
  13. 13.
    V. E. Nazarov, S. B. Kiyashko, and A. V. Radostin, Radiophys. Quantum Electron., 59, No. 3, 246 (2016).ADSCrossRefGoogle Scholar
  14. 14.
    O.V. Rudenko, Doklady—Mathematics, 94, No. 3, 708 (2016).CrossRefGoogle Scholar
  15. 15.
    C. M. Hedberg and O. V. Rudenko, Nonlin. Dyn., 90, No. 3, 2083 (2017).CrossRefGoogle Scholar
  16. 16.
    L.D. Landau and E. M. Lifshitz, Theory of Elasticity, Butterworth-Heinemann, Oxford (1986).zbMATHGoogle Scholar
  17. 17.
    V. E. Nazarov and A. V. Radostin, Acoust. Phys., 55, No. 3, 334 (2009).ADSCrossRefGoogle Scholar
  18. 18.
    V. E. Nazarov and S. B. Kiyashko, Radiophys. Quantum Electron., 56, No. 10, 686 (2013).ADSCrossRefGoogle Scholar
  19. 19.
    V. E. Nazarov and S. B. Kiyashko, Tech. Phys., 59, No. 3, 311 (2014).CrossRefGoogle Scholar
  20. 20.
    O. V. Rudenko and S. I. Soluyan, Theoretical Foundations of Nonlinear Acoustics, Springer, New York (1977).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • V. E. Nazarov
    • 1
  • S. B. Kiyashko
    • 1
  • A. V. Radostin
    • 1
  1. 1.Institute of Applied Physics of the Russian Academy of SciencesNizhny NovgorodRussia

Personalised recommendations