Radiophysics and Quantum Electronics

, Volume 61, Issue 6, pp 389–401 | Cite as

Resonant Interaction of Relativistic Electrons with Electromagnetic Ion–Cyclotron Waves. II. Integral Parameters of Interaction Regimes

  • V. S. GrachEmail author
  • A. G. Demekhov

We analyze the integral parameters of resonant interaction of relativistic electrons in the Earth’s radiation belts with electromagnetic ion–cyclotron waves. The analysis is based on numerical simulations. Wave packets of finite length with varying frequency and various amplitude profiles propagating from the equator are considered. The roles of three nonlinear interaction regimes, analyzed in the first part of our paper [1] for single particle trajectories, are compared. It is shown that interaction characteristics depend stronger on the electron energy and wave packet position for the wave packet with Gaussian amplitude profile than for the wave packet with constant amplitude. For the wave packet with Gaussian amplitude profile, the directed and diffusive transfer of particles in the phase space are comparable, while for the wave packet with constant amplitude the mean change in the equatorial pitch angle can be considerably (a factor of 3 to 5) greater than the standard deviation. The most significant decrease in the equatorial pitch angle and the largest fraction of the corresponding particles are obtained for particles with energies of about 1 MeV for the wave packet close to the equator. The fraction of particles which can be scattered into the loss cone after a single pass through the wave packet is 1.0–1.7%.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. S. Grach and A. G. Demekhov, Radiophys. Quantum Electron., 60, No. 12, 942 (2017).ADSCrossRefGoogle Scholar
  2. 2.
    B. J. Anderson and D. C. Hamilton, J. Geophys. Res., 98, No. A7, 11369 (1993).ADSCrossRefGoogle Scholar
  3. 3.
    B. J. Fraser and T. S. Nguyen, J. Atmosph. Solar-Terr. Phys., 63, 1225 (2001).ADSCrossRefGoogle Scholar
  4. 4.
    T.M. Loto’aniu, B. J. Fraser, and C. L. Waters, J. Geophys. Res., 110, A07214 (2005).ADSGoogle Scholar
  5. 5.
    M.E. Usanova, I. R. Mann, K. Bortnik, et al., J. Geophys. Res., 117, No. A10, A10218 (2012).ADSCrossRefGoogle Scholar
  6. 6.
    K. Keika, K. Takahashi, A. Y. Ukhorskiy, and Y. Miyoshi, J. Geophys. Res., 118, No. 7, 4135 (2013).CrossRefGoogle Scholar
  7. 7.
    J. Kangas, A. Guglielmi, and O. Pokhotelov, Space Sci. Rev., 83, 435 (1998).ADSCrossRefGoogle Scholar
  8. 8.
    M. J. Engebretson, A. Keiling, K.-H. Fornacon, et al., Planetary Space Sci ., 55, 829 (2007).ADSCrossRefGoogle Scholar
  9. 9.
    M. J. Engebretson, J. L. Posch, A. M. Westerman, et al., J. Geophys. Res., 113, No. A7, A07206 (2008).ADSCrossRefGoogle Scholar
  10. 10.
    J. S. Pickett, B. Grison, Y. Omura, et al., Geophys. Res. Lett ., 37, L09104 (2010).ADSCrossRefGoogle Scholar
  11. 11.
    K. Mursula, J. Atmosph. Solar-Terr. Phys., 69, 1623 (2007).ADSCrossRefGoogle Scholar
  12. 12.
    M. J. Engebretson, J. L. Posch, J.R.Wygant, et al., J. Geophys. Res., 120, 5465 (2015).CrossRefGoogle Scholar
  13. 13.
    R. M. Thorne and C. F. Kennel, J. Geophys. Res., 76, No. 19, 4446 (1971).ADSCrossRefGoogle Scholar
  14. 14.
    V. I. Karpman, Y. N. Istomin, and D. R. Shklyar, Plasma Phys., 16, No. 8, 685 (1974).ADSCrossRefGoogle Scholar
  15. 15.
    J. M. Albert, Phys. Fluids B, 5, 2744 (1993).ADSCrossRefGoogle Scholar
  16. 16.
    J. M. Albert, J. Geophys. Res., 105, 21 (2000).CrossRefGoogle Scholar
  17. 17.
    J. M. Albert and J. Bortnik, Geophys. Res. Lett ., 36, No. 12, L12110 (2009).ADSCrossRefGoogle Scholar
  18. 18.
    A. G. Demekhov, V. Yu. Trakhtengerts, M. Rycroft, and D. Nunn, Geomagn. Aeron., 46, No. 6, 711 (2006).ADSCrossRefGoogle Scholar
  19. 19.
    Y. Kubota and Y. Omura, J. Geophys. Res., 122, No. 1, 293 (2017).CrossRefGoogle Scholar
  20. 20.
    Y. Omura and Q. Zhao, J. Geophys. Res., 117, No. A8, A08227 (2012).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Applied Physics of the Russian Academy of SciencesNizhny NovgorodRussia
  2. 2.Polar Geophysical InstituteApatityRussia

Personalised recommendations