Advertisement

Radiophysics and Quantum Electronics

, Volume 57, Issue 10, pp 730–736 | Cite as

Weak Localization in Media with Refractive-Index Gradient: the Diffusion Approximation

  • Ya. A. IlyushinEmail author
Article

We consider the effect of weak localization of waves in the scattering medium with regular refractive-index gradient. The solution within the diffusion approximation of the radiative transfer theory is obtained. Reasonable qualitative agreement of the approximate solution with the results of numerical simulation is shown.

Keywords

Radiative Transfer Equation Weak Localization Coherent Component Coherent Backscattering Radiative Transfer Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yu.N.Barabenkov, Radiophys. Quantum Electron., 16, 1, 65 (1973).CrossRefADSGoogle Scholar
  2. 2.
    B. Hapke, Icarus, 88, 407 (1990).CrossRefADSGoogle Scholar
  3. 3.
    A. Battaglia, S. Tanelli, S. Kobayashi, et al., J. Quant. Spectrosc., Rad. Transfer, 111, No. 6, 917 (2010).CrossRefADSGoogle Scholar
  4. 4.
    A. Afanasiev, J. Atmos. Solar-Terr. Phys., 67, 1002 (2005).CrossRefADSGoogle Scholar
  5. 5.
    Y. A. Ilyushin, Planet. Space Sci., 57, 1458 (2009).CrossRefADSGoogle Scholar
  6. 6.
    Y. A. Ilyushin, Planet. Space Sci., 52, 1195 (2004).CrossRefADSGoogle Scholar
  7. 7.
    Y. A. Ilyushin, J. Quant. Spectrosc. Rad. Transfer, 117, 133 (2013).CrossRefADSGoogle Scholar
  8. 8.
    Y. A. Ilyushin, J. Opt. Soc. Am. A, 30, 1305 (2013).CrossRefADSGoogle Scholar
  9. 9.
    V. V. Marinyuk and D.B.Rogozkin, Laser Phys., 19, 176 (2009).CrossRefADSGoogle Scholar
  10. 10.
    E. Akkermans, P.E.Wolf, and R.Maynard, Phys. Rev. Lett ., 56, 1471 (1986).CrossRefADSGoogle Scholar
  11. 11.
    A. Ishimaru, Wave Propagation and Scattering in Random Media, Vol. 2, Academic Press, New York (1978).Google Scholar
  12. 12.
    M. L. Shendeleva, J. Opt. Soc. Am. A, 21, 2464 (2004).CrossRefADSMathSciNetGoogle Scholar
  13. 13.
    R.C. Haskell, L.O. Svaasand, T.-T.Tsay, et al., J. Opt. Soc. Am. A, 11, 2727 (1994).CrossRefADSGoogle Scholar
  14. 14.
    L.Elsgolts, Differential Equations and the Calculus of Variations Mir Publishers, Moscow (1970).Google Scholar
  15. 15.
    L. G. Henyey and J. L.Greenstein, Astrophys. J ., 93, 70 (1941).CrossRefADSGoogle Scholar
  16. 16.
    S. M. Ermakov and G. A. Mikhailov, Statistical Simulation [in Russian], Fizmatlit, Moscow (1982).Google Scholar
  17. 17.
    Vl. V. Voevodin, S.A. Zhymatiy, S. I. Sobolev, et al., Lomonosov Supercomputer Practice [in Russian], Otkrytye Sistemy, Moscow (2012).Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.M. V. Lomonosov Moscow State UniversityMoscowRussia

Personalised recommendations