Advertisement

Radiophysics and Quantum Electronics

, Volume 57, Issue 4, pp 239–250 | Cite as

On the Doppler Frequency Shifts of Radar Signals Backscattered from the Sea Surface

  • S. A. ErmakovEmail author
  • I. A. Kapustin
  • V. N. Kudryavtsev
  • I. A. Sergievskaya
  • O. V. Shomina
  • B. Chapron
  • Yu. Yu. Yurovskiy
Article

We study the frequency spectra of the radar signals scattered from the wind waves on the sea surface in the full-scale experiment. Two types of the radar Doppler shifts of the spectrum maximum, namely, the averaged shift of the instantaneous spectrum of the scattered signal and the shift of the maximum of the signal time-averaged spectrum as functions of the incidence angle and the wind velocity and direction are analyzed for different sounding-wave polarizations. Significant difference between the average shift of the instantaneous spectrum and the shift of the average-spectrum maximum is demonstrated. This difference is attributed to the radar-signal modulation effect in the field of long surface waves. The obtained results are very important for correct retrieval of the velocities of the surface currents using the data of the satellite-borne measurements of the radar Doppler shifts.

Keywords

■■■  

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. S.Monin and V. P. Krasitskii, Phenomena on the Ocean Surface [in Russian], Gidrometeoizdat, Leningrad (1985).Google Scholar
  2. 2.
    S. V. Viktorov and L. M. Mitnik, eds., Radar Observations of the Earth’s Surface from Space [in Russian], Gidrometeoizdat, Leningrad (1990).Google Scholar
  3. 3.
    M. G. Bulatov, Yu. A. Kravtsov, O. Yu. Lavrova, et al., Physics—Uspekhi, 46, No. 1, 63 (2003).ADSGoogle Scholar
  4. 4.
    O. Yu. Lavrova, A. G. Kostyanoy, S.A. Lebedev, et al., Complex Satellite Monitoring of the Seas of Russia [in Russian], Inst. Space Res., Moscow (2011).Google Scholar
  5. 5.
    B. Chapron, F. Collard, and F. Ardhuin, J. Geophys. Res., 110, C07008 (2005).ADSGoogle Scholar
  6. 6.
    A. A. Mouche, F. Collard, B. Chapron, et al., IEEE Trans. Geosci. Remote Sensing, 50, No. 7, 2901 (2012).CrossRefADSGoogle Scholar
  7. 7.
    F. G. Bass and I. M. Fuks, Wave Scattering from Statistically Rough Surfaces, Pergamon Press, Oxford (1979).Google Scholar
  8. 8.
    S. M. Rytov, Yu. A.Kravtsov, and V. I.Tatarskii, Principles of Statistical Radiophysics, Springer–Verlag, Berlin (1989).Google Scholar
  9. 9.
    M. S. Longuett-Higgins, J. Fluid Mech., 16, 138 (1963).MathSciNetCrossRefADSGoogle Scholar
  10. 10.
    K. D. Ruvinskii, F. I. Feldstein, and G. I. Freidman, J. Fluid Mech., 230, 339 (1991).CrossRefADSGoogle Scholar
  11. 11.
    S. A. Ermakov, K. D. Ruvinskii, S. G. Salashin, and G. I.Freidman, Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana, 22, No. 10, 1072 (1986).Google Scholar
  12. 12.
    M. Longuet-Higgins, J. Fluid Mech., 301, 79 (1995).MathSciNetCrossRefzbMATHADSGoogle Scholar
  13. 13.
    W. J. Plant, W. C.Keller, V. Hesany, et al., J. Geophys. Res., 104, No. 2, 3243 (1999).CrossRefADSGoogle Scholar
  14. 14.
    M. Gade, W. Alpers, S. A. Ermakov, et al., J. Geophys. Res., 103, No. 10, 21697 (1998).CrossRefADSGoogle Scholar
  15. 15.
    S. A. Ermakov, I. A. Kapustin, and I. A. Sergievskaya, Bull. Rus. Acad. Sci. Phys., 74, No. 12, 1695 (2010).CrossRefGoogle Scholar
  16. 16.
    S. A. Ermakov, I. A. Kapustin, and I. A. Sergievskaya, Radiophys. Quantum Electron., 55, No. 7, 453 (2012).CrossRefADSGoogle Scholar
  17. 17.
    V. Kudryavtsev, D. Hauser, G. Caudal, and B. Chapron, J. Geophys. Res., 108, No. 3, 8054 (2003).CrossRefADSGoogle Scholar
  18. 18.
    V. Kudryavtsev, D. Hauser, G. Caudal, and B. Chapron, J. Geophys. Res., 108, No. 3, 1 (2003).Google Scholar
  19. 19.
    V. Kudryavtsev, D. Akimov, J. Johannessen, and B. Chapron, J. Geophys. Res., 110, 07016 (2005).CrossRefADSGoogle Scholar
  20. 20.
    T. Hara and W. J. Plant, J. Geophys. Res., 99, No. 5, 9767 (1994).CrossRefADSGoogle Scholar
  21. 21.
    S. A. Ermakov, I. A. Sergievskaya, and Yu. B. Shchegolkov, Radiophys. Quantum Electron., 25, No. 12, 942 (2002).CrossRefADSGoogle Scholar
  22. 22.
    S. A. Ermakov, I. A. Sergievskaya, E. M. Zuykova, and Yu. B. Shchegolkov, Izvestiya, Atmos. Ocean. Phys., 40, No. 1, 91 (2004).Google Scholar
  23. 23.
    V. N. Kudryavtsev, V. K. Makin, and B. Chapron, J. Geophys. Res., 104, 7625 (1999).CrossRefADSGoogle Scholar
  24. 24.
    A. Rosenberg, M. Ritter, W.K. Melvillle, et al., IEEE Trans. Geosci. Remote Sensing, 37, No. 2, 1052 (1999).CrossRefADSGoogle Scholar
  25. 25.
    P. H. Y. Lee, J. D. Barter, K. L. Beach, et al., J. Geophys. Res., 100, No. 2, 2591 (1995).CrossRefADSGoogle Scholar
  26. 26.
    Yu. A. Kravtsov, M. I. Mityagina, and A. N. Churyumov, Radiophys. Quantum Electron., 42, No. 3, 216 (1999).CrossRefADSGoogle Scholar
  27. 27.
    W. J. Plant, J. Geophys. Res., 87, No. 1, 1961 (1982).MathSciNetCrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • S. A. Ermakov
    • 1
    • 2
    • 3
    • 4
    Email author
  • I. A. Kapustin
    • 1
    • 2
    • 3
  • V. N. Kudryavtsev
    • 2
  • I. A. Sergievskaya
    • 1
    • 2
    • 3
  • O. V. Shomina
    • 1
    • 2
    • 3
  • B. Chapron
    • 2
  • Yu. Yu. Yurovskiy
    • 5
  1. 1.Institute of Applied Physics of the Russian Academy of SciencesNizhny NovgorodRussia
  2. 2.Russian State Hydrometeorological UniversitySt. PetersburgRussia
  3. 3.N. I. Lobachevsky State University of Nizhny NovgorodNizhny NovgorodRussia
  4. 4.Volga State Academy of Water TransportNizhny NovgorodRussia
  5. 5.Marine Hydrophysical InstituteSevastopolRussia

Personalised recommendations