Radiophysics and Quantum Electronics

, Volume 56, Issue 3, pp 157–166 | Cite as

The short envelope soliton dynamics in inhomogeneous dispersive media with allowance for stimulated scattering by damped low-frequency waves

  • N. V. AseevaEmail author
  • E. M. Gromov
  • V. V. Tyutin

We consider the soliton dynamics in terms of the extended nonlinear Schrödinger equation taking into account the inhomogeneous linear second-order dispersion (SOD) and stimulated scattering by damped low-frequency waves (SSDW). It is shown that the wave number downshift due to SSDW is compensated by an upshift due to the SOD decrease on the spatial coordinate. A new class of stationary nonlinear localized solutions (solitons) arising as an equilibrium of SSDW and decreasing spatial SOD is found analytically within the framework of the extended inhomogeneous nonlinear Schrödinger equation. A regime of the dynamic equilibrium of SSDW and inhomogeneous dispersive medium with the soliton parameters periodically varied in time is found. Analytical and numerical results are in good agreement for this regime.


Soliton Wave Packet Soliton Solution Stimulate Raman Scattering Nonlinear Dispersion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. P. Agrawal, Nonlinear Fiber Optics, Academic Press, San Diego (2001).Google Scholar
  2. 2.
    Y. Yang, Solitons in Field Theory and Nonlinear Analysis, Springer, New York (2001).CrossRefzbMATHGoogle Scholar
  3. 3.
    Y. S. Kivshar and G. P. Agrawal, Optical Solitons: From Fibers to Photonic Crystals, Academic Press, Amsterdam (2003).Google Scholar
  4. 4.
    L. A. Dickey, Soliton Equation and Hamiltonian Systems, World Scientific, New York (2005).Google Scholar
  5. 5.
    V. E. Zakharov and A. B. Shabat, Sov. Phys. JETP, 34, 62 (1972).MathSciNetADSGoogle Scholar
  6. 6.
    A. Hasegava and F. Tappert, Appl. Phys. Lett ., 23, 142 (1973).ADSCrossRefGoogle Scholar
  7. 7.
    J. R. Oliviera and M. A. Moura, Phys. Rev. E, 57, 4751 (1998).MathSciNetADSCrossRefGoogle Scholar
  8. 8.
    F. M. Mitschke and L. F. Mollenauer, Opt. Lett., 11, 659 (1986).ADSCrossRefGoogle Scholar
  9. 9.
    J. P. Gordon, Opt. Lett., 11, 662 (1986).ADSCrossRefGoogle Scholar
  10. 10.
    Y. J. Kodama, Stat. Phys., 39, 597 (1985).MathSciNetADSCrossRefGoogle Scholar
  11. 11.
    Y. Kodama and A. Hasegava, IEEE J. Quantum Electron., 23, 510 (1987).ADSCrossRefGoogle Scholar
  12. 12.
    C. E. Zaspel, Phys. Rev. Lett., 82, 723 (1999).ADSCrossRefGoogle Scholar
  13. 13.
    B. Hong and D. Lu, Int. J. Nonlin. Sci., 7, 360 (2009).MathSciNetzbMATHGoogle Scholar
  14. 14.
    V. I. Karpman, Eur. Phys. J. B., 39, 341 (2004).ADSCrossRefGoogle Scholar
  15. 15.
    E. M. Gromov and V. I. Talanov, J. Exp. Theor. Phys., 81, 73 (1996).ADSGoogle Scholar
  16. 16.
    E. M. Gromov and V. I. Talanov, Radiophys. Quantum Electron., 39, 436 (1996).MathSciNetADSGoogle Scholar
  17. 17.
    E. M. Gromov and V. I. Talanov, Chaos, 10, 551 (2000).ADSCrossRefGoogle Scholar
  18. 18.
    E. M. Gromov, L. V. Piskunova, and V. V. Tyutin, Phys. Lett. A, 256, 153 (1999).ADSCrossRefGoogle Scholar
  19. 19.
    M. A. Obregon and Yu. A. Stepanyants, Phys. Lett. A, 249, 315 (1998).ADSCrossRefGoogle Scholar
  20. 20.
    M. Scalora, M. Syrchin, N. Akozbek, et al., Phys. Rev. Lett., 95, Art. No. 013902 (2005).Google Scholar
  21. 21.
    S. C. Wen Y. Wang, W. Su, et al., Phys. Rev. E, 73, Art. No. 036617 (2006).Google Scholar
  22. 22.
    M. Marklund, P. K. Shukla, and L. Stenflo, Phys. Rev. E, 73, Art. No. 037601 (2006).Google Scholar
  23. 23.
    N. L. Tsitsas, N. Rompotis, I. Kourakis, et al., Phys. Rev. E, 79, Art. No. 037601 (2009).Google Scholar
  24. 24.
    Y. S. Kivshar, Phys. Rev. A, 42, 1757 (1990).ADSCrossRefGoogle Scholar
  25. 25.
    Y. S. Kivshar and B. A. Malomed, Opt. Lett., 18, 485 (1993).ADSCrossRefGoogle Scholar
  26. 26.
    S. A. Akhmanov, V. A. Vysloukh, and A. S. Chirkin, Optics of Femtosecond Laser Pulses, Amer. Inst. Phys., New York (1992). (1998).Google Scholar
  27. 27.
    B. A. Malomed and R. S.Tasgal, J. Opt. Soc. Amer. B, 15, 162 (1998).ADSCrossRefGoogle Scholar
  28. 28.
    F. Biancalama, D. V. Skrybin, and A. V. Yulin, Phys. Rev. E, 70, Art. No. 011615 (2004).Google Scholar
  29. 29.
    R.-J. Essiambre and G. P. Agrawal, J. Opt. Soc. Amer. B, 14, 314 (1997).ADSCrossRefGoogle Scholar
  30. 30.
    R.-J. Essiambre and G. P. Agrawal, J. Opt. Soc. Amer. B, 14, 323 (1997).ADSCrossRefGoogle Scholar
  31. 31.
    A. Andrianov, S. Muraviev, A. Kim, and A. Sysoliatin, Laser Phys., 17, 1296 (2007).ADSCrossRefGoogle Scholar
  32. 32.
    S. Chernikov, E. Dianov, D. Richardson, and D. Payne, Opt. Lett., 18, 476 (1993).ADSCrossRefGoogle Scholar
  33. 33.
    V. E. Zakharov, Sov. Phys. JETP, 35, No. 5, 908 (1972).ADSGoogle Scholar
  34. 34.
    V. E. Zakharov, Sov. Phys. JETP, 33, No. 5, 927 (1971).ADSGoogle Scholar
  35. 35.
    V. E. Zakharov, Radiophys. Quantum Electron., 17, No. 4, 326 (1974).ADSCrossRefGoogle Scholar
  36. 36.
    R. Blit and B. A. Malomed, Phys. Rev. A, 86, Art. No. 043841 (2012).Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Higher School of EconomicsNizhny NovgorodRussia

Personalised recommendations