Radiophysics and Quantum Electronics

, Volume 55, Issue 1–2, pp 126–141 | Cite as

Effects of modification of the polar ionosphere with high-power short-wave extraordinary-mode HF waves produced by the spear heating facility

  • T. D. Borisova
  • N. F. BlagoveshchenskayaEmail author
  • A. S.Kalishin
  • K. Oksavik
  • L. Baddelley
  • T. K.Yeoman

We present the results of modifying the F2 layer of the polar ionosphere experimentally with highpower HF extraordinary-mode waves. The experiments were performed in October 2010 using the short-wave SPEAR heating facility (Longyearbyen, Spitsbergen). To diagnose the effects of high-power HF waves by the aspect-scattering method in a network of diagnostic paths, we used the short-wave Doppler radar CUTLASS (Hankasalmi, Finland) and the incoherent scatter radar ESR (Longyearbyen, Spitsbergen). Excitation of small-scale artificial ionospheric irregularities was revealed, which were responsible for the aspect and backward scattering of the diagnostic signals. The measurements performed by the ESR incoherent scatter radar simultaneously with the heating demonstrated changes in the parameters of the ionospheric plasma, specifically, an increase in the electron density by 10–25 % and an increase in the electron temperature by 10–30 % at the altitudes of the F2 layer, as well as formation of sporadic ionization at altitudes of 140–180 km (below the F2 layer maximum). To explain the effects of ionosphere heating with HF extraordinary-mode waves, we propose a hypothesis of transformation of extraordinary electromagnetic waves to ordinary in the anisotropic, smoothly nonuniform ionosphere.


Critical Frequency Ionospheric Plasma Ionospheric Irregularity Polar Ionosphere Heating Frequency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. V. Gurevich, Phys. Usp., 50, No. 11, 1091 (2007).ADSCrossRefGoogle Scholar
  2. 2.
    S. M. Grach, A. N. Karashtin, N. A. Mityakov, et al., Fiz. Plazmy, 4, 1330 (1978).Google Scholar
  3. 3.
    V. V. Vas’kov and A. V. Gurevich, Sov. Phys.–JETP, 42, 91 (1975).ADSGoogle Scholar
  4. 4.
    N. F. Blagoveshchenskaya, Geophysical Effects of Modifications of the Near-Earth Space [in Russian], Gidrometeoizdat, St. Petersburg (2001).Google Scholar
  5. 5.
    T. R. Robinson, T. K. Yeoman, R. S. Dhillon, et al., Ann. Geophys., 24, 291 (2006), Scholar
  6. 6.
    R. S. Dhillon, T. R. Robinson, and T. K. Yeoman, Ann. Geophys., 25, 1801 (2007).ADSCrossRefGoogle Scholar
  7. 7.
    N. F. Blagoveshchenskaya, T. D. Borisova, V. A. Kornienko, et al., Radiophys. Quantum Electron., 51, No. 11, 847 (2008).ADSCrossRefGoogle Scholar
  8. 8.
    N. F. Blagoveshchenskaya, T. D. Borisova, T. K. Yeoman, and M. T. Rietveld, Radiophys. Quantum Electron., 53, 512 (2010).ADSCrossRefGoogle Scholar
  9. 9.
    N. F. Blagoveshchenskaya, T. D. Borisova, T. K. Yeoman, et al., Geophys. Res. Lett., 38, L08802 (2011).CrossRefGoogle Scholar
  10. 10.
    H. Lofas, N. Ivchenko, B.Gustavsson, et al., Ann. Geophys, 27, 2585 (2009).ADSCrossRefGoogle Scholar
  11. 11.
    M. T. Rietveld, M. J. Kosch, N. F. Blagoveshchenskaya, et al., J. Geophys. Res. A, 108, No. 4, SIA 2-1 (2003), doi: 10.1029/2002JA009543.
  12. 12.
    R. A. Greenwald, K. B. Baker, J. R. Dudeney, et al., Space Sci. Rev., 71, 761 (1995).ADSCrossRefGoogle Scholar
  13. 13.
    N. V. Shulgina, Studies in Geomagnetism, Aeronomics, and Solar Physics [in Russian], Nauka, Moscow, No. 59, 40 (1982).Google Scholar
  14. 14.
    T. D. Borisova, A. N. Baranetz, and Yu. N.Cherkashin, in: Propagation of Radio Waves in the Ionosphere [in Russian], Nauka, Moscow, 12 (1986).Google Scholar
  15. 15.
    V. V. Vas’kov and N. A. Ryabova, Adv. Space Res., 21, No. 5, 697 (1998).ADSCrossRefGoogle Scholar
  16. 16.
    V. L. Frolov, L. M. Kagan, E. N. Sergeev, et al., J. Geophys. Res. A, 104, No. 6, 12695 (1999).ADSCrossRefGoogle Scholar
  17. 17.
    V. L. Ginzburg, The Propagation of Electromagnetic Waves in Plasmas, Pergamon Press, Oxford (1970).Google Scholar
  18. 18.
    V. M. Vyatkin, Linear Transformation of Characteristic Waves in Inhomogeneous Magnetized Plasma in the Presence of Inhomogeneous Plasma in the Presence of Degeneration Points of Various Multiplicity. Cand. Sci. Thesis [in Russian], St.Petersburg (1992).Google Scholar
  19. 19.
    A. V. Gurevich, K.P. Zybin, and H. S. Carlson, Radiophys. Quantum Electron., 48, No. 9, 686 (2005).ADSCrossRefGoogle Scholar
  20. 20.
    A. V. Gurevich and A. B. Shvartsburg, Nonlinear Theory of Radio Wave Propagation in the Ionosphere [in Russian], Nauka, Moscow (1973).Google Scholar
  21. 21.
    R. W. Schunk and A. Nagi, Ionospheres: Physics, Plasma Physics, and Chemistry, Cambridge Uni. Press (2000).Google Scholar
  22. 22.
  23. 23.
    W. B. Lyatsky and Yu. P. Maltsev, Magnetosphere–Ionosphere Interaction [in Russian], Nauka, Moscow (1983).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2012

Authors and Affiliations

  • T. D. Borisova
    • 1
  • N. F. Blagoveshchenskaya
    • 1
    Email author
  • A. S.Kalishin
    • 1
  • K. Oksavik
    • 2
  • L. Baddelley
    • 2
  • T. K.Yeoman
    • 3
  1. 1.Arctic and Antarctic Research InstituteSt. PetersburgRussia
  2. 2.University Center in SvalbardLongyearbyenNorway
  3. 3.University of LeicesterLeicesterUnited Kingdom

Personalised recommendations