Advertisement

Radiophysics and Quantum Electronics

, Volume 54, Issue 8–9, pp 557–568 | Cite as

The current stage of development of the receiving complex of the millimetron space observatory

  • A. V. SmirnovEmail author
  • A. M. Baryshev
  • P. de Bernardis
  • V. F. Vdovin
  • G. N. Gol’tsman
  • N. S. Kardashev
  • L. S. Kuz’min
  • V. P. Koshelets
  • A. N. Vystavkin
  • Yu. V. Lobanov
  • S. A. Ryabchun
  • M. I. Finkel
  • D. R. Khokhlov
Article

We present an overview of the state of the onboard receiving complex of the Millimetron space observatory in the development phase of its preliminary design. The basic parameters of the onboard equipment planned to create and required for astrophysical observations are considered. A review of coherent and incoherent detectors, which are central to each receiver of the observatory, is given. Their characteristics and limiting parameters feasible at the present level of technology are reported.

Keywords

PbTe Josephson Junction Noise Temperature Transition Edge Sensor Kinetic Inductance Detector 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
  2. 2.
  3. 3.
    K. Irwin, App. Phys. Lett ., 66, 1998 (1995).ADSCrossRefGoogle Scholar
  4. 4.
    P. K. Day, H. G. LeDuc, B. A. Mazin, et al., Nature, 425, 817 (2003).ADSCrossRefGoogle Scholar
  5. 5.
    B. S. Karasik and R. Cantor, Appl. Phys. Lett ., 98, 193503 (2011).ADSCrossRefGoogle Scholar
  6. 6.
    L. S. Kuzmin, I.A. Devyatov, and D. Golubev, Proc. SPIE, 3465, 193 (1998).ADSCrossRefGoogle Scholar
  7. 7.
    S. N. Chesnokov, D. E. Dolzhenko, I. I. Ivanchik, and D. R. Khokhlov, Infrared Phys., 35, 23 (1994).CrossRefGoogle Scholar
  8. 8.
    P. Khosropanah, B. Dirks, M. Parra-Borderias, et al., Proc. SPIE, 7741, 77410L (2010).CrossRefGoogle Scholar
  9. 9.
    D. Morozov, P. D. Mauskopf, P. A. R. Ade, et al., IEEE Trans. Appl. Supercond., 21, 188 (2011).ADSCrossRefGoogle Scholar
  10. 10.
    P. D. Mauskopf, D. Morozov, P. A. R. Ade, et al., in: Proc. 22nd Int. Symp. Space Terahertz Technol., Tucson, USA, 2011, p. 130.Google Scholar
  11. 11.
  12. 12.
    L. Ferrari, M. D.Audley, G. de Lange, et al., in: Proc. 22nd Int. Symp. Space Terahertz Technol., Tucson, USA, 2011, p. 90.Google Scholar
  13. 13.
    A. Monfardini, A. Bideaud, A. Benoit, et al., Astrophys. J. Suppl. Series, 194, No. 2, 24 (2011).ADSCrossRefGoogle Scholar
  14. 14.
    L. J. Swenson, A. Cruciani, A. Benoit, et al., Appl. Phys. Lett ., 96, 263511 (2010).ADSCrossRefGoogle Scholar
  15. 15.
    M. Roesch, A. Benoit, A. Bideaud, et al., Proc. 22nd Int. Symp. Space Terahertz Technol., Tucson, USA, 2011, p. 53.Google Scholar
  16. 16.
    M. Gershenson, D. Gong, T. Sato, et al., Appl. Phys. Lett ., 79, 2049 (2001).ADSCrossRefGoogle Scholar
  17. 17.
    A. Andreev, Sov. Phys. JETP., 19, 1228 (1964).Google Scholar
  18. 18.
    B. Karasik, K. Il’in, E. Pechen, and S. Krasnosvobodtsev, Appl. Phys. Lett ., 68, No. 16, 2285 (1996).ADSCrossRefGoogle Scholar
  19. 19.
    L. Kuzmin, in: Proc. SPIE Conf., 2004, Vol. 5498, p. 349.Google Scholar
  20. 20.
    A. Agulo, L. Kuzmin, and M. Tarasov, Proc. 16th Int. Symp. Space Terahertz Technol., Gothenburg, Sweden, 2005, p. 147.Google Scholar
  21. 21.
    M. Tarasov, L. Kuzmin, N. Kaurova, et al., in: Proc. 21th Int. Symp. Space Terahertz Technol., Oxford, UK, 2010, p. 256.Google Scholar
  22. 22.
    D. E. Dolzhenko, L. I. Ryabova, A. V. Nicorici, and D. R. Khokhlov, in: Proc. 19th Int. Symp. “Nanostructures: Physics and Technology”, Ekaterinburg, Russia, 2011, p. 247.Google Scholar
  23. 23.
    J. R. Tucker, IEEE J. Quantum Electron., 15, 1234 (1979).ADSCrossRefGoogle Scholar
  24. 24.
    J. R. Tucker and M. J. Feldman, Rev. Mod. Phys., 57, 1055 (1985).ADSCrossRefGoogle Scholar
  25. 25.
    C.-Y. E. Tong, R. Blundell, B. Bumble, et al., in: Proc. 7th Int. Symp. Space Terahertz Technol., Charlottesville, Virginia, USA, 1996, p. 47.Google Scholar
  26. 26.
    A. Karpov, J. Blondel, M. Voss, and K. Gundlach, IEEE Trans. Appl. Supercond., 9, 4456 (1999).CrossRefGoogle Scholar
  27. 27.
    G. Chattopadhyay, F. Rice, D. Miller, et al., IEEE Microwave and Guided Wave Lett ., 9, No. 11, 467 (1999).CrossRefGoogle Scholar
  28. 28.
    A. Hedden, H. Li, E. Tong, et al., in: IEEE MTT-S Int. Microwave Symp. Digest, 2009, p. 949.Google Scholar
  29. 29.
    G. de Lange, J. J. Kuipers, T. M. Klapwijk, et al., J. Appl. Phys., 77, 1795 (1995).ADSCrossRefGoogle Scholar
  30. 30.
    A. Karpov, D. Miller, F. Rice, et al., IEEE Trans. Appl. Supercond., 17, No. 2, 343 (2007).ADSCrossRefGoogle Scholar
  31. 31.
    P. N. Dmitriev, A.B. Ermakov, N. V. Kinev, et al., Usp. Sovrem. Radioélektron., No. 5, 75 (2010).Google Scholar
  32. 32.
    M. Yu. Torgashin, V. P. Koshelets, P. N. Dmitriev, et al., IEEE Trans. Appl. Supercond., 17, No. 2, 379 (2007).ADSCrossRefGoogle Scholar
  33. 33.
    G. de Lange, M. Birk, D. Boersma, et al., Supercond. Sci. Technol ., 23, No. 4, 045016 (2010).ADSCrossRefGoogle Scholar
  34. 34.
    O. Kiselev, M. Birk, A. Ermakov, et al., IEEE Trans. Appl. Supercond., 21, No. 3, 612 (2011).ADSCrossRefGoogle Scholar
  35. 35.
    R. Ozhegov, K. Gorshkov, G. Gol’tsman, et al., Supercond. Sci. Technol ., 24, 035003 (2011).ADSCrossRefGoogle Scholar
  36. 36.
    E. M. Gershenzon, G. N. Gol’tsman, A. I. Elantiev, et al., Low Temp. Phys.., 14, No. 7, 753 (1988).Google Scholar
  37. 37.
    G. N. Gol’tsman, A. D. Semenov, Yu. P. Gousev, et al., Superconductors: Science and Technology, 4, 453 (1991).ADSCrossRefGoogle Scholar
  38. 38.
    Y. Lobanov, C.-E. Tong, A. Hedden, et al., IEEE Trans. Appl. Supercond., 21, No. 3, 628 (2011).ADSCrossRefGoogle Scholar
  39. 39.
    I. Tretyakov, S. Ryabchun, M. Finkel, et al., Appl. Phys. Lett ., 98, 033507 (2011).ADSCrossRefGoogle Scholar
  40. 40.
    Yu. Vachtomin, M. Finkel, S. Antipov, et al., in: Proc. 13th Int. Symp. Space Terahertz Technol., Harvard University Press, Cambridge, MA, 2002, p. 259.Google Scholar
  41. 41.
    J. J. A. Baselmans, M. Hajenius, J. R. Gao, et al., Appl. Phys. Lett ., 84, 1958 (2004).ADSCrossRefGoogle Scholar
  42. 42.
    P. Khosropanah, J. R. Gao, W. M. Laauwen, et al., Appl. Phys. Lett ., 91, 221111 (2007).ADSCrossRefGoogle Scholar
  43. 43.
    W. Zhang, P. Khosropanah, J. R. Gao, et al., Appl. Phys. Lett ., 96, 111113 (2010).ADSCrossRefGoogle Scholar
  44. 44.
    S. Cherednichenko, V. Drakinskiy, T. Berg, et al., Rev. Sci. Instrum., 79, 034501 (2008).ADSCrossRefGoogle Scholar
  45. 45.
  46. 46.
    B. Manfred, W. Georg, G. de Lange, et al., in: Proc. 21th Int. Symp. Space Terahertz Technol, Oxford, UK, 2010, p. 195.Google Scholar
  47. 47.
  48. 48.
    D. P. Marrone, R. Blundell, E. Tong, et al., in: Proc. 16th Int. Symp. Space Terahertz Technology, Goteborg, Sweden, 2005, p. 64.Google Scholar
  49. 49.
    W. Wild, N. S. Kardashev, Experimental Astron., 23, No. 1, 221 (2008).ADSCrossRefGoogle Scholar
  50. 50.
    S. Maslennikov, M. Finkel, S. Antipov, et al., in: Proc. 17th Int. Symp. Space Terahertz Technology, Paris, France, 2006, p. 174.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2012

Authors and Affiliations

  • A. V. Smirnov
    • 1
    • 2
    Email author
  • A. M. Baryshev
    • 3
  • P. de Bernardis
    • 4
  • V. F. Vdovin
    • 1
    • 5
    • 6
  • G. N. Gol’tsman
    • 1
    • 2
  • N. S. Kardashev
    • 1
  • L. S. Kuz’min
    • 6
    • 7
  • V. P. Koshelets
    • 8
  • A. N. Vystavkin
    • 8
  • Yu. V. Lobanov
    • 2
  • S. A. Ryabchun
    • 2
  • M. I. Finkel
    • 1
    • 2
  • D. R. Khokhlov
    • 9
  1. 1.Astrophysical Center of the P.N. Lebedev Institute of Physics of the Russian Academy of SciencesMoscowRussia
  2. 2.Pedagogical State University of MoscowMoscowRussia
  3. 3.Netherlands Institute for Space Research (SRON)Groningenthe Netherlands
  4. 4.Sapienza University of RomeRomeItaly
  5. 5.Institute of Applied Physics of the Russian Academy of SciencesNizhny NovgorodRussia
  6. 6.R. E. Alekseyev Technical University of Nizhny NovgorodNizhny NovgorodRussia
  7. 7.Chalmers University of TechnologyGothenburgSweden
  8. 8.V. A. Kotel’nikov Institute for Radioengineering and ElectronicsMoscowRussia
  9. 9.M. V. Lomonosov State University of MoscowMoscowRussia

Personalised recommendations