Radio vision of the vertical structure of the layers and a study of radio-wave propagation conditions in the atmosphere using high-stability satellite signals

Article

From an analysis of the CHAMP (Germany) and FORMOSAT-3 (Taiwan–USA) satellite data it follows that the second-order time derivative of the eikonal (eikonal acceleration) and the Doppler frequency shift are two most important parameters indispensable for the radio vision of layers in the atmosphere and the ionosphere. Measurements of the temporal evolution of the Doppler shift permit one to study the vertical structure of the atmosphere under the condition of its spherical symmetry. Analysis of the amplitude and phase of interrelated variations in the eikonal acceleration and radio-wave intensity permits one to detect the layers in the atmosphere and the ionosphere. Eikonal variations are converted into refraction attenuation variations, which allows the integral absorption to be determined with the refraction effect on the radio-wave intensity cancelled out. This is necessary for measurements of the water-vapor density and gas minorities during multifrequency radio-occultation sounding along the satellite-to-satellite paths. The obtained results can be of common value for other remote-sounding paths, as well.

References

  1. 1.
    O. I. Yakovlev, Space Radio Science, Taylor and Francis, London (2003).Google Scholar
  2. 2.
    A. S. Gurvich and T. G. Krasil’nikova, Kosmich. Issled., No. 6, 89 (1987).Google Scholar
  3. 3.
    W. G. Melbourne, Radio Occultations Using Earth Satellites: A Wave Theory Treatment, Jet Propulsion Laboratory, California Institute of Technology, Boulder (2004).Google Scholar
  4. 4.
    Y.-A. Liou and A. G. Pavelyev, Geophys. Res. Lett., 33, No. 23, L23102 (2006).CrossRefADSGoogle Scholar
  5. 5.
    A. G. Pavelyev, Y.-A. Liou, J. Wickert, et al., J. Geophys. Res. A, 112, 06326 (2007).CrossRefGoogle Scholar
  6. 6.
    Y. A. Liou, A. G. Pavelyev, S. F. Liu, et al., IEEE Trans. Geosci. Remote Sensing, 45, No. 10, 3813 (2007).CrossRefADSGoogle Scholar
  7. 7.
    A. G. Pavelyev, J. Wickert, and Y.-A. Liou, Radiophys. Quantum Electron., 51, No. 1, 1 (2008).CrossRefADSGoogle Scholar
  8. 8.
    A. G. Pavelyev, Y.-A. Liou, J. Wickert, et al., Adv. Space Res., 42, No. 6, 224 (2008).CrossRefADSGoogle Scholar
  9. 9.
    S. V. Sokolovskiy, Radio Sci., 35, No. 1, 97 (2000).CrossRefADSGoogle Scholar
  10. 10.
    M. E. Gorbunov, A. S. Gurvich, and A. V. Shmakov, Int. J. Remote Sensing, 23, No. 4, 675 (2002).CrossRefADSGoogle Scholar
  11. 11.
    S. V. Sokolovskiy, W. Schreiner, C. Rocken, and D. Hunt, Geophys. Res. Lett., 29, No. 3, 1033 (2002).CrossRefADSGoogle Scholar
  12. 12.
    A. G. Pavelyev, A. I. Zakharov, A. I. Kucheryavenkov, et al., J. Commun. Tech. Electron., 42, No. 1, 45 (1997).Google Scholar
  13. 13.
    A. G. Pavelyev, A. V. Volkov, A. I. Zakharov, et al., Acta Astronautica, 39, Nos. 9–12, 721 (1996).CrossRefADSGoogle Scholar
  14. 14.
    G. Kirchengast and P. Hoeg, in: A. K. S. G. Kirchengast and U. Foelsche, eds., Occultations for Probing Atmosphere and Climate, Springer, New York (2004), p. 201.Google Scholar
  15. 15.
    M. E. Gorbunov and G. Kirchengast, Radio Sci., 40, No. 6, RS6001 (2005).CrossRefADSGoogle Scholar
  16. 16.
    M. S. Lohman, A. S. Jensen, H.-H. Benzon, and A. S. Nielsen, “Radio Occultation Retrieval of Atmospheric Absorption based on FSI,” Report 03-20, Danish Meteorological Institute, Copenhagen (2003).Google Scholar
  17. 17.
    A. S. Jensen, M. S. Lohmann, A. S. Nielsen, and H.-H. Benzon, Radio Sci., 39, No. 3, 1040 (2003).CrossRefADSGoogle Scholar
  18. 18.
    A. G. Pavelyev and A. I. Kucheryavenko, Radiotekh. Élektron., 23, No. 7, 1345 (1978).ADSGoogle Scholar
  19. 19.
    A. G. Kislyakov and K. S. Stankevich, Radiophys. Quantum Electron., 10, Nos. 9–10, 1244 (1967).Google Scholar
  20. 20.
    O. I. Yakovlev, S. S. Matyugov, and I. A. Vilkov, Radio Sci., 30, 591 (1995).CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2009

Authors and Affiliations

  1. 1.Institute of Radio Engineering and Electronics of the Russian Academy SciencesFryazino of the Moscow regionMoscowRussia

Personalised recommendations