Optimization of the cavity of a second-gyroharmonic continuous-wave gyrotron with an operating frequency of 258 GHz

  • N. A. Zavolsky
  • V. E. Zapevalov
  • O. V. Malygin
  • M. A. Moiseev
  • A. S. Sedov

We present the results of numerical studies of the processes in the cavity of a continuous-wave gyrotron operated at the wavelength λ = 1.16 mm (operating frequency of 258 GHz) and having an output power of 100–200 W. Limitations for the choice of the working mode, which are posed by the system of electron beam formation, and the influence of parasitic modes synchronous with the electron beam at the first and second harmonics of the cyclotron frequency are considered. Optimization of the cavity profile is performed. The maximum efficiency and the radiation ower are determined for an accelerating voltage of up to 15 kV and an electron beam current of up to 0.5 A.


Electron Beam Radiation Power Cyclotron Frequency Transverse Velocity Ohmic Loss 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Yu. Bykov, A. Eremeev, M. Glyavin, et al., IEEE Trans. Plasma Sci., 32, No. 1, 67 (2004).CrossRefADSGoogle Scholar
  2. 2.
    T. Idehara, I. Ogawa, La Agusu, et al., Int. J. Infrared Millimeter Waves, 28, 433 (2007).CrossRefADSGoogle Scholar
  3. 3.
    M. K. Hornstein, V. S. Bajaj, R. G. Griffin, and R. J. Temkin, IEEE Trans. Plasma Sci., 35, No. 1, 27 (2007).CrossRefADSGoogle Scholar
  4. 4.
    A. V. Gaponov, M. I. Petelin, and V. K. Yulpatov, Radiophys. Quantum Electron., 10, Nos. 9–10, 794 (1967).ADSGoogle Scholar
  5. 5.
    G. S. Nusinovich, Introduction to the Physics of Gyrotrons, The John Hopkins Univ. Press, Baltimore (2004).Google Scholar
  6. 6.
    I. I. Antakov, V. S. Ergakov, E. V. Zasypkin, and E. V. Sokolov, Radiophys. Quantum Electron., 20, No. 4, 413 (1977).CrossRefADSGoogle Scholar
  7. 7.
    V. L. Bratman, M. A. Moiseev, M. I. Petelin, and R. É. Érm, Radiophys. Quantum Electron., 16, No. 4, 474 (1973).CrossRefADSGoogle Scholar
  8. 8.
    A. A. Kuraev, I. S. Kovalev, and S. V. Kolosov, Numerical Optimization Methods in the Problems of Microwave Electronics [in Russian], Nauka i Tekhnika, Minsk (1975).Google Scholar
  9. 9.
    V. L. Bratman, Yu. K. Kalynov, V. N. Manuilov, et al., J. Commun. Technol. Electron., 46, No. 6, 688 (2001).Google Scholar
  10. 10.
    Sh. E. Tsimring, Electron Beams and Microwave Vacuum Electronics, Wiley, Hoboken, N.J., (2007).Google Scholar
  11. 11.
    N. I. Zaytsev, T. B. Pankratova, M. I. Petelin, and V. A. Flyagin, Radiotekh. Élektron., 19, No. 5, 1056 (1974).Google Scholar
  12. 12.
    M. Yu. Glyavin, A. A. Gurtovnik, G. S. Nusinovich, and T. B. Pankratova, in: Gyrotron [in Russian], Inst. Appl. Phys., Gorky (1989), p. 73.Google Scholar
  13. 13.
    M. I. Petelin, in: Gyrotron [in Russian], Inst. Appl. Phys., Gorky (1989), p. 77.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2009

Authors and Affiliations

  • N. A. Zavolsky
    • 1
  • V. E. Zapevalov
    • 1
  • O. V. Malygin
    • 1
  • M. A. Moiseev
    • 1
  • A. S. Sedov
    • 1
  1. 1.Institute of Applied Physics of the Russian Academy of SciencesNizhny NovgorodRussia

Personalised recommendations