Radiophysics and Quantum Electronics

, Volume 51, Issue 1, pp 1–8 | Cite as

Localization of plasma layers in the ionosphere based on observing variations in the phase and amplitude of radiowaves along the satellite-to-satellite path



We propose a method for localization of layered structures in the ionosphere, which is based on simultaneous observations of time variations in the intensity and phase of radio waves along transionospheric paths. The method determines the position of the turning point, where the gradient of the refraction index is perpendicular to the ray trajectory and the influence of the layered structure on the parameters of radio waves is maximal. The layer position is estimated by analyzing the variations in the phase and intensity of radio waves in combination. The method was used to analyze the experimental data obtained by the radio occulation mission CHAMP. The position for inclined plasma layers was determined and the electron density distribution was found for the considered radio occultation sessions. The method was verified by measuring the turning point on the ray trajectory in a neutral gas in the atmosphere.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    O. I. Yakovlev, Space Radiophysics [in Russian], RFBR, Moscow (1998).Google Scholar
  2. 2.
    E. R. Kursinski, G. A. Hajj, J. T. Schofield, et al., J. Geophys. Res., 102, 23429 (1997).CrossRefADSGoogle Scholar
  3. 3.
    G. A. Hajj, E. R. Kursinski, L. J. Romans, et al., J. Atmos. Sol. Terr. Phys., 64, 451 (2002).CrossRefADSGoogle Scholar
  4. 4.
    J. Wickert, A. G. Pavelyev, Y. A. Liou, et al., Geophys. Res. Lett., 31, No. 24, L24801 (2004).CrossRefADSGoogle Scholar
  5. 5.
    M. E. Gorbunov, A. S. Gurvich, and A. V. Shmakov, Int. J. Remote Sensing, 23, No. 4, 675 (2002).CrossRefGoogle Scholar
  6. 6.
    S. V. Sokolovskiy, W. Schreiner, C. Rocken, and D. Hunt, Geophys. Res. Lett., 29, No. 3, 621 (2002).CrossRefGoogle Scholar
  7. 7.
    A. G. Pavelyev, Y. A. Liou, and J. Wickert, Radio Sci., 39, No. 4. 4011 (2004).CrossRefADSGoogle Scholar
  8. 8.
    Y. A. Liou, A. G. Pavelyev, J. Wickert, et al., GPS Solut., 9, 122 (2005).CrossRefGoogle Scholar
  9. 9.
    J. Wickert, Ch. Reigber, G. Beyerle, et al., Geophys. Res. Lett., 28, 3263 (2001).CrossRefADSGoogle Scholar
  10. 10.
    A. G. Pavelyev, A. V. Volkov, A. I. Zakharov, et al., Acta Astronautica, 39, No. 9–12, 721 (1996).CrossRefADSGoogle Scholar
  11. 11.
    D. L. Wu, O. A. Chi, G. A. Hajj, et al., J. Geophys. Res., 110, Art. no. A01306 (2005).Google Scholar
  12. 12.
    M. C. Kelly, The Earth's Ionosphere: Int. Geophys. Ser., 43, Elsevier, New York, 1989.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2008

Authors and Affiliations

  1. 1.Institute of Radioengineering and Electronics of the Russian Academy of SciencesFryazino, Moscow RegionRussia
  2. 2.GeoForschungsZentrumPotsdamGermany
  3. 3.Center for Remote Sensing and Space ResearchNational Central UniversityChung-LiTaiwan, China

Personalised recommendations