Radiophysics and Quantum Electronics

, Volume 50, Issue 8, pp 619–632 | Cite as

Some distinctive features in the behavior of small-scale artificial ionospheric irregularities at mid-and high latitudes

  • N. F. Blagoveshchenskaya
  • T. D. Borisova
  • V. A. Kornienko
  • V. L. Frolov
  • M. T. Rietveld
  • A. Brekke
Article

Abstract

We present the results of experimental studies of some features in the behavior of small-scale artificial irregularities (SSAIs) at mid-and high latitudes based on the “Sura” and EISCAT/HEATING HF facilities. Observations were performed by the method of aspect scattering using a network of diagnostic paths having a common reception point located near St. Petersburg. We found that an extremely long duration of the second (slow) stage of SSAI relaxation of up to 5 min occurs in the evening hours when the ionosphere above the “Sura” facility is illuminated by the Sun, but the solar terminator travels through the magnetically conjugated ionosphere. The conjecture is made that the processes initiated by the terminator are mostly responsible for secondary ionospheric turbulence maintaining the irregularities above “Sura.” A drastic increase in the Doppler spectra width of the scattered signals is revealed when the magnetically conjugate point of the ionosphere is located on the shade side of the terminator, but the ionosphere above the “Sura” facility is still lighted. It is assumed that the “ run away” of photoelectrons from the day to the night side could reduce the threshold of excitation of artificial irregularities, leading to an increase in their intensity. The presence of fairly intense scattered signals was detected from the “Sura” and EISCAT/HEATING experimental results both under conditions of pulsed HF heating after continuous heater-on periods and cycled HF heating by short pulses. In the case of pulsed heating by short pulses with duration τp < 100 ms and average radiated power Pa below the threshold power Pthr of the SSAI generation cutoff the irregularities can be maintained due only to striction parametric instabilities. The excitation of irregularites under the cycled HF pumping with the pulse duration τp = 384 ms for Pa comparable with Pthr was detected. The aspect-angle dependence, or the so-called magnetic zenith effect, was found in the SSAI intensity. The residual turbulence aftereffects played a significant role in the SSAI development.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Minkoff, M. Laviola, S. Abrams, and D. Porter, Radio Sci., 9, 957 (1974).ADSGoogle Scholar
  2. 2.
    G. D. Thome, Radio Sci., 9, 917 (1974).ADSGoogle Scholar
  3. 3.
    G. G. Getmantsev, L. M. Erukhimov, N. A. Mityakov, et al., Radiophys. Quantum Electron., 19, No. 12, 1327 (1976).CrossRefADSGoogle Scholar
  4. 4.
    A. F. Belenov, V. A. Bubnov, L. M. Erukhimov, et al., Radiophys. Quantum Electron., 20, No. 12, 1240 (1977).CrossRefADSGoogle Scholar
  5. 5.
    V. B. Avdeev, V. S. Beley, A. F. Belenov, et al., Radiophys. Quantum Electron., 37, No. 4, 299 (1994).CrossRefADSGoogle Scholar
  6. 6.
    V. L. Frolov, L. M. Erukhimov, S. A. Metelev, and E. N. Sergeev, Atmos. Sol.-Terr. Phys., 59, 2317 (1997).CrossRefADSGoogle Scholar
  7. 7.
    A. J. Coster, F. T. Djuth, R. J. Jost, and W. E. Gordon, J. Geophys. Res., 90, 2807 (1985).ADSCrossRefGoogle Scholar
  8. 8.
    M. C. Kelley, T. L. Arce, J. Salowey, et al., J. Geophys. Res., 100, 17367 (1995).CrossRefADSGoogle Scholar
  9. 9.
    N. F. Blagoveshchenskaya, V. A. Kornienko, A. V. Petlenko, et al., Ann. Geophys., 16, 1212 (1998).CrossRefADSGoogle Scholar
  10. 10.
    M. T. Rietveld, M. J. Kosch, N. F. Blagoveshchenskaya, et al., J. Geophys. Res., 108, doi: 10.1029/2002JA009543 (2003).Google Scholar
  11. 11.
    N. F. Blagoveshchenskaya, T. D. Borisova, V. A. Kornienko, et al., Adv. Space Res., 38, 2503 (2006).CrossRefADSGoogle Scholar
  12. 12.
    N. F. Blagoveshchenskaya, Geophysical Effects of Active Actions in Circumterrestrial Space [in Russian], Gidrometeoizdat, St. Petersburg (2001).Google Scholar
  13. 13.
    N. F. Blagoveshchenskaya and O. A. Troshichev, J. Atmos. Sol.-Terr. Phys., 58, 397 (1996).CrossRefADSGoogle Scholar
  14. 14.
    V. V. Vas’kov and A. V. Gurevich, Sov. Phys. JETP, 42, No. 1, 91 (1976).Google Scholar
  15. 15.
    A. V. Gurevich and A. B. Shvartsburg, Nonlinear Theory of Radiowave Propagation [in Russian], Nauka, Moscow (1973).Google Scholar
  16. 16.
    S. M. Grach and V. Yu. Trakhtengerts, Radiophys. Quantum Electron., 18, No. 9, 951 (1975).CrossRefADSGoogle Scholar
  17. 17.
    A. V. Gurevich, A. V. Lukyanov, and K. P. Zybin, Phys. Lett. A, 206, 247 (1995).CrossRefADSGoogle Scholar
  18. 18.
    T. L. Franz, M. C. Kelley, and A. V. Gurevich, Radio Sci., 34, 465 (1999).CrossRefADSGoogle Scholar
  19. 19.
    A. V. Gurevich, H. Carlson, and K. P. Zybin, Phys. Lett. A, 288, 231 (2001).CrossRefADSGoogle Scholar
  20. 20.
    A. N. Karashtin, G. P. Komrakov, Yu. V. Tokarev, and Yu. V. Shlyugaev, Radiophys. Quantum Electron., 42, No. 8, 674 (1999).CrossRefADSGoogle Scholar
  21. 21.
    M. T. Rietveld, H. Kohl, H. Kopka, and P. Stubbe, J. Atmos. Sol.-Terr. Phys., 55, 577 (1993).CrossRefADSGoogle Scholar
  22. 22.
    D. L. Hysell, M. C. Kelley, Y. M. Yampolski, et al., J. Geophys. Res., 101, 26981 (1996).CrossRefADSGoogle Scholar
  23. 23.
    Y. M. Yampolski, V. S. Beley, S. B. Kascheev, et al., J. Geophys. Res., 102, 7461 (1997).CrossRefADSGoogle Scholar
  24. 24.
    Yu. M. Yampol’sky, Izv. Vyssh. Ucheb. Zaved., Radiofiz., 32, 519 (1989).Google Scholar
  25. 25.
    L. M. Erukhimov, S. A. Metelev, N. A. Mityakov, and V. L. Frolov, Radiophys. Quantum Electron., 21, No. 12, 1209 (1978).CrossRefADSGoogle Scholar
  26. 26.
    T. D. Borisova, N. F. Blagoveshchenskaya, I. V. Moskvin, et al., Ann. Geophys., 20, 1479 (2002).ADSGoogle Scholar
  27. 27.
    L. M. Erukhimov, S. A. Metelev, E. N. Myasnikov, et al., Radiophys. Quantum Electron., 30, No. 2, 156 (1987).CrossRefADSGoogle Scholar
  28. 28.
    L. M. Kagan and V. L. Frolov, J. Atmos. Sol.-Terr. Phys., 58, 1465 (1996).CrossRefADSGoogle Scholar
  29. 29.
    V. L. Frolov, G. G. Vertogradov, and V. G. Vertogradov, Radiophys. Quantum Electron. [in press].Google Scholar
  30. 30.
    N. I. Izhovkina, I. S. Prutensky, S. A. Pulinets, et al., Geomagn. Aeron., 46, No. 6, 717 (2006).CrossRefADSGoogle Scholar
  31. 31.
    J. Doering, W. Peterson, C. Bostrom, and J. Armstrong, J. Geophys. Res., 80, 3934 (1975).ADSGoogle Scholar
  32. 32.
    W. Peterson, J. Doering, T. Potemra, et al., Geophys. Res. Lett., 4, 109 (1977).ADSGoogle Scholar
  33. 33.
    E. N. Sergeev, S. M. Grach, and P. V. Kotov, Radiophys. Quantum Electron., 47, No. 3, 185 (2004).CrossRefADSGoogle Scholar
  34. 34.
    N. F. Blagoveshchenskaya, T. D. Borisova, V. A. Kornienko, et al., Ann. Geophys., 24, 2333 (2006).ADSCrossRefGoogle Scholar
  35. 35.
    V. L. Frolov, Radiophys. Quantum Electron., 31, No. 10, 1164 (1988).CrossRefGoogle Scholar
  36. 36.
    G. N. Boiko, L. M. Erukhimov, and V. L. Frolov, Geomagn. Aeron., 30, No. 6, 843 (1990).Google Scholar
  37. 37.
    V. A. Zyuzin, G. P. Komrakov, and A. N. Nasyrov, Geomagn. Aéronom, 27, 942 (1987).ADSGoogle Scholar
  38. 38.
    V. L. Frolov, G. P. Komrakov, D. I. Nedzvetsky, et al., Radiophys. Quantum Electron., 49, No. 8, 579 (2006).CrossRefADSGoogle Scholar
  39. 39.
    M. T. Rietveld, M. J. Kosch, N. G. Blagoveshchenskaya, et al., J. Geophys. Res., 109, doi: 10.1029/2004JA010460 (2004).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • N. F. Blagoveshchenskaya
    • 1
  • T. D. Borisova
    • 1
  • V. A. Kornienko
    • 1
  • V. L. Frolov
    • 2
  • M. T. Rietveld
    • 3
  • A. Brekke
    • 4
  1. 1.Arctic and Antarctic Research InstituteSt. Petersburg
  2. 2.Radiophysical Research InstituteNizhny NovgorodRussia
  3. 3.The EISCAT European AssociationTromsø
  4. 4.University of TromsøTromsøNorway

Personalised recommendations