Radiophysics and Quantum Electronics

, Volume 49, Issue 2, pp 108–119 | Cite as

Influence of the energy and velocity spread in the electron beam on the starting conditions and efficiency of a gyrotron

  • N. A. Zavolsky
  • V. E. Zapevalov
  • M. A. Moiseev
Article

Abstract

We study theoretically the influence of the spread of initial energies and velocities in the electron beam on the starting conditions and efficiency of a gyrotron. We compare various analytical and numerical models and the results of experimental studies of gyrotrons in which the interaction takes place at the first and second harmonics of the cyclotron frequency. The aftercavity interaction of the electron beam with the high-frequency field in the output waveguide transition is taken into account. The influence of the energy spread on the recuperation efficiency is estimated. Permissible spreads of the initial energies and electron velocities are determined.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. V. Gaponov, M. I. Petelin, and V. K. Yulpatov, Radiophys. Quantum Electron., 10, Nos. 9–10, 794 (1967).Google Scholar
  2. 2.
    A. A. Kuraev, I. S. Kovalev, and S. V. Kolosov, Numerical Optimization Methods in the Problems of Microwave Electronics [in Russian], Nauka i Tekhnika, Minsk (1975).Google Scholar
  3. 3.
    I. I. Antakov, V. S. Ergakov, E. V. Zasypkin, and E. V. Sokolov, Radiophys. Quantum Electron., 20, No. 413 (1977).Google Scholar
  4. 4.
    S. Y. Cai, T. M. Antonsen, Jr., G. Saraph, and B. Levush, Int. J. Electron., 72, Nos. 5–6, 759 (1992).Google Scholar
  5. 5.
    O. Dumbrajs, and J. P. T. Koponen, Phys. Plasmas, 6, No. 6, 2618 (1999).CrossRefADSGoogle Scholar
  6. 6.
    V. K. Lygin, Int. J. Infrared Millimeter Waves, 16, No. 2, 363 (1995).CrossRefGoogle Scholar
  7. 7.
    P. V. Krivosheev, V. K. Lygin, V. N. Manuilov, and Sh. E. Tsimring, Int. J. Infrared Millimeter Waves, 22, No. 8, 1119 (2001).CrossRefGoogle Scholar
  8. 8.
    O. Dumbrajs, P. Nikkola, and B. Piosczyk, Int. J. Electron., 88, No. 2, 215 (2001).CrossRefGoogle Scholar
  9. 9.
    V. E. Zapevalov, M. Yu. Glyavin, A. L. Goldenberg, et al., IEEE Trans. Plasma Sci., 27, No. 2, 474 (1999).CrossRefGoogle Scholar
  10. 10.
    V. E. Zapevalov, G. G. Denisov, V. A. Flyagin, et al., Plasma Devices Operat., 6, 111 (1998).Google Scholar
  11. 11.
    V. E. Zapevalov, G. G. Denisov, V. A. Flyagin, et al., Fusion Eng. Design, 53, Nos. 1–4, 377 (2000).Google Scholar
  12. 12.
    V. L. Bratman, N. S. Ginzburg, G. S. Nusinovich, et al., Int. J. Electron., 51, No. 4, 541 (1981).Google Scholar
  13. 13.
    N. A. Zavolsky, V. E. Zapevalov, and M. A. Moiseev, Radiophys. Quantum Electron., 44, No. 4, 318 (2001).CrossRefGoogle Scholar
  14. 14.
    G. S. Nusinovich and R. É. Érm, Elektron. Tekh., Ser. 1, Élektronika SVCh, No. 8, 55 (1972).Google Scholar
  15. 15.
    V. S. Ergakov, M. A. Moiseev, and R. É. Érm, Elektron. Tekh., Ser. 1, Élektronika SVCh, No. 3, 20 (1980).Google Scholar
  16. 16.
    V. E. Zapevalov and M. A. Moiseev, Radiophys. Quantum Electron., 47, No. 7, 520 (2004).CrossRefADSGoogle Scholar
  17. 17.
    V. E. Myasnikov, M. V. Agapova, V. V. Alikaev, et al., in: 21 Int. Conf. Infrared and Millimeter Waves, Berlin, Germany, 1996, p. ATH1.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • N. A. Zavolsky
    • 1
  • V. E. Zapevalov
    • 1
  • M. A. Moiseev
    • 1
  1. 1.Institute of Applied Physics of the Russian Academy of SciencesNizhny NovgorodRussia

Personalised recommendations