Radiophysics and Quantum Electronics

, Volume 48, Issue 10–11, pp 779–791 | Cite as

Problems of cryogenic cooling of superconductor and semiconductor receivers in the range 0.1–1 THz

  • V. F. Vdovin


We present the theoretical fundamentals and features of development of cryogenic cooling systems for receivers in the range 0.1–1 THz. The results of development of cryogenic systems for sustaining the temperatures in the range from 150 to 0.3 K are considered. The systems are based on a wide class of cryogenic devices employing various principles and thermodynamic cycles. The described developments are based on the unity of the thermal and radiophysical complexes of the cooled receiver and the cryosystem. The discussed cryosystems are specifically used to cool receivers with the mixers based on Schottky-barrier diodes and superconductor-insulator-superconductor structures, as well as on various bolometers. The problems of heat insulation against the surrounding medium and heat transfer from the receiver to the cryogenic liquid, the features of the input/output of signals in a wide frequency range and of mechanical vacuum-tight thermo-decoupled inputs to the cryostat, and the control systems for cryoelectronic complexes are considered in detail. The presented results can be used for both laboratory experiments and practical applications in radio astronomy, atmosphere spectroscopy, and other fields.


Heat Transfer Control System Laboratory Experiment Quantum Electronics Nonlinear Optic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. N. Alfeev, Radioengineering of Low Temperatures [in Russian], Sovetskoe Radio, Moscow (1966).Google Scholar
  2. 2.
    E. I. Antonov, E. A. Kolenko, Yu. A. Petrovsky, and A. I. Smirnov, Devices for Cooling of Radiation Receivers [in Russian], Mashinostroenie, Leningrad, (1975).Google Scholar
  3. 3.
    Yu. A. Dryagin and L. I. Fedoseev, Radiophys. Quantum Electron., 12, No. 6, 647 (1969).CrossRefGoogle Scholar
  4. 4.
    L. I. Fedoseev and Yu. Yu. Kulikov, Radiotekh. Élektronika, 16, No. 4, 554 (1971).Google Scholar
  5. 5.
    B. A. Rozanov and S. B. Rozanov, Millimeter-Wave Receivers [in Russian], Radio i Svyaz, Moscow, (1989).Google Scholar
  6. 6.
    V. F. Vdovin and I. I. Zinchenko, Radiophys. Quantum Electron., 41, 965 (1998).Google Scholar
  7. 7.
    A. G. Kislyakov and A. A. Shvetsov, Radiohys. Quantum Electron, 16, No. 12, 1433 (1973).Google Scholar
  8. 8.
    N. A. Esepkina, D. V. Korolkov, and Yu. N. Pariysky, Radio Telescopes and Radiometers [in Russian], Nauka, Moscow, (1972).Google Scholar
  9. 9.
    V. F. Vdovin, A. I. Eliseev, I. I. Zinchenko, et al., in: Microwave Physics. Collection of Reports on Research Projects of the Ministry for Science and Technology of the Russian Federation [in Russian], p. 100 (2000).Google Scholar
  10. 10.
    W. J. Archer, Rev. Sci. Instrum, 56, No. 3, 449 (1985).CrossRefADSGoogle Scholar
  11. 11.
    I. I. Zinchenko, A. M. Baryshev, V. F. Vdovin, et al., Astron. Lett, 23, 123 (1997).ADSGoogle Scholar
  12. 12.
    C. E. Groppi, “Submillimeter heterodyne spectroscopy of star forming regions,” PhD Thesis, University of Arizona, Tucson (2003). (2003).Google Scholar
  13. 13.
    W. A. Little, Rev. Sci. Instrum., 5, No. 55. 661 (1984).ADSGoogle Scholar
  14. 14.
    Digest of Symposium on Micro-and Nanocryogenics, August 1–3, 1999, Jyvaskylä, Finland.Google Scholar
  15. 15.
    V. P. Koshelets, S. V. Shitov, L. V. Filippenko, et al. Radiophys. Quantum Electron., 46, Nos. 8–9, 618 (2003).ADSGoogle Scholar
  16. 16.
    W. Frost, Heat Transfer at Low Temperatures, Plenum Press, New York (1975).Google Scholar
  17. 17.
    J. W. Lamb, Int. J. Infrared Millimeter Waves, 14, No. 5, 959 (1993).CrossRefADSGoogle Scholar
  18. 18.
    G. E. Gol’tsman and D. N. Loudkov, Radiophys. Quantum Electron., 46, Nos. 8–9, 604 (2003).ADSGoogle Scholar
  19. 19.
    F. A. Mansour, S. Ye, B. Jolley, et al., IEEE Trans. Microwave Theory Tech., 48, No. 4, 1171 (2000).Google Scholar
  20. 20.
    A. N. Vystavkin, Radiophys. Quantum Electron., 46, Nos. 8–9, 729, (2003).ADSGoogle Scholar
  21. 21.
    V. G. Bozhkov, Radiophys. Quantum Electron, 45, No. 5, 381 (2002).CrossRefGoogle Scholar
  22. 22.
    V. F. Vdovin, D. V. Korotaev, N. I. Lapkin, and L. I. Fedoseev, in: Proc. Russian Seminar on Radiophysics of Millimeter-and Submillimeter-Wave Ranges, Nizhny Novgorod, Russia, (2005) [in Russian], p. 31.Google Scholar
  23. 23.
    T. Gaier, D. Dawson, S. Weinreb, et al., in: J. Mallat, A. Raisanen, and J. Tuovinen, eds., Proc. 3rd ESA Workshop on Millimeter-Wave Technology and Applications: Circuit, Systems, and Measurement Techniques, Millilab, Espoo, Finland: MilliLab, (2003), p. 113.Google Scholar
  24. 24.
    M. P. Malkov, ed., Handbook of Physico-Technical Fundamentals of Cryogenics [in Russian], Énergoatomizdat, Moscow, (1985).Google Scholar
  25. 25.
    V. F. Vdovin, D. V. Korotaev, and I. V. Lapkin, in: Proc. 11th International School on Radiophysics and Microwave Electronics Saratov State Univ., Saratov, 1999 [in Russian], p. 21.Google Scholar
  26. 26.
    R. Siegel and R. J. Howell, Thermal Radiation Heat Transfer, Taylor and Francis, New York (2001).Google Scholar
  27. 27.
    W. R. McGrath, A. V. Raisanen, P. L. Richards, et al., IEEE Trans. Magn., 21, No. 2, 212 (1985).CrossRefADSGoogle Scholar
  28. 28.
    V. F. Vdovin, “Method for determination of the temperature of a Shottky-barrier diode in a cooled mixer,” USSR Inventor’s Certificate No. 1382132 (1986).Google Scholar
  29. 29.
    V. G. Bozhkov, Radiophys. Quantum Electron., 46, Nos. 8–9, 631 (2003).ADSGoogle Scholar
  30. 30.
    O. Koistinen, H. Valmu, A. Raisanen, et al., IEEE Trans. Microwave Theory Tech., 41, No. 12, 2232 (1993).Google Scholar
  31. 31.
    V. F. Vdovin, Yu. A. Dryagin, and I. V. Lapkin, in: Proc. 7th All-Union Scientific and Technological Conf. “Metrology in Radioelectronics,” 1988 [in Russian], p. 146.Google Scholar
  32. 32.
    Yu. A. Dryagin, I. V. Lapkin, V. F. Vdovin, et al., Exp. Astron., 5, 279 (1994).CrossRefADSGoogle Scholar
  33. 33.
    A. N. Borienko, V. F. Vdovin, A. I. Eliseev, et al., Peterburg Zh. Élektron., 3, No. 28, 39 (2001).Google Scholar
  34. 34.
    V. N. Trofimov, A. N. Chernikov, V. F. Vdovin, et al., “Optical cryostat with a sorption He3 refrigerator,” Preprint No. R8-2005-41 [in Russian], Joint Institute for Nuclear Research, Dubna (2005).Google Scholar
  35. 35.
    A. G. Kislyakov, I. P Yastrebov, V. F. Vdovin, et al., in: Proc. 4th Sci. Conf. on Radiophysics [in Russian], TALAM, Nizhny Novgorod (2001), p. 140.Google Scholar
  36. 36.
    V. G. Bozhkov, V. F. Vdovin, V. N. Voronov, et al., Radiotekh. Élektron., 37, No. 4, 736 (1992).Google Scholar
  37. 37.
    V. I. Karagusov, Khim. Neftegaz. Mashinostr., No. 7, 18 (2003).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • V. F. Vdovin
    • 1
  1. 1.Institute of Applied Physics of the Russian Academy of SciencesNizhny NovgorodRussia

Personalised recommendations