Radiophysics and Quantum Electronics

, Volume 48, Issue 9, pp 711–719 | Cite as

High-Frequency Radio Emission of the Lightning Discharge

  • A. N. Karashtin
  • Yu. V. Shlyugaev
  • A. V. Gurevich


A special system created to register short electromagnetic pulses has been used to study high-frequency (0.1–30 MHz) radio emission of lightning discharges. It has been shown that the emission is a sequence of short pulses. The shape, width, and amplitude of the first (bipolar) pulse agree with those predicted by theory with account for the combined action of the effect of the runaway electron breakdown and an extensive atmospheric shower for the energy of the initial particle of the order of 1016 eV.


Quantum Electronics Nonlinear Optic Short Pulse Combine Action Radio Emission 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. R. Kreihbel, M. Brook, and R. A. McCrory, J. Geophys. Res. C, 84, No.5. 2432 (1979).ADSGoogle Scholar
  2. 2.
    E. P. Krider, C. D. Weidman, and D. M. Le Vine, J. Geophys. Res. C, 84, No.9, 5760 (1979).ADSGoogle Scholar
  3. 3.
    C. D. Weidman, E. P. Krider, and M. A. Uman, Geophys. Res. Lett., 8, No.8, 931 (1981).ADSGoogle Scholar
  4. 4.
    D. E. Proctor, J. Geophys. Res. C, 86, No.5, 4041 (1981).ADSGoogle Scholar
  5. 5.
    W. Beasley, M. A. Uman, P. L. Rustan Jr., J. Geophys. Res., 87, 4883 (1982).ADSGoogle Scholar
  6. 6.
    C. T. Rhodes, X. M. Shao, P. R. Krehbiel, et al., J. Geophys. Res. D, 99, No.6, 13059 (1994).ADSGoogle Scholar
  7. 7.
    M. A. Uman, The Lightning Discharge, San Diego, Calif., Academic (1987).Google Scholar
  8. 8.
    D. MacGorman and W. D. Rust, The Electrical Nature of the Storms, Oxford Univ. Press, New York (1998).Google Scholar
  9. 9.
    A. V. Gurevich, L. M. Duncan, A. N. Karashtin, and K. P. Zybin, Phys. Lett. A, 312, No.3–4, 228 (2003).ADSGoogle Scholar
  10. 10.
    A. V. Gurevich, L. M. Duncan, Yu. V. Medvedev, and K. P. Zybin, Phys. Lett. A, 301, No.3–4, 320 (2002).ADSGoogle Scholar
  11. 11.
    A. V. Gurevich, G. M. Milikh, and R. Roussel-Dupre, Phys. Lett. A 165, No.5–6, 463 (1992).ADSGoogle Scholar
  12. 12.
    R. Roussel-Dupre, A. V. Gurevich, T. Tunnell, and G. M. Milikh, Phys. Rev. E, 49, No.3, 2257 (1994).ADSGoogle Scholar
  13. 13.
    A. V. Gurevich and K. P. Zybin, Uspekhi Fiz. Nauk [in Russian], 2001. 171, No.11, 1177 (2001).CrossRefGoogle Scholar
  14. 14.
    T. C. Marshall, M. P. McCarthy, and W. D. Rust, J. Geophys. Res. D, 100, No.4, 7097 (1995).ADSGoogle Scholar
  15. 15.
    A. V. Gurevich, K. P. Zybin, and R. A. Roussel-Dupre, Phys. Lett. A, 254, No.1–2, 79 (1999).ADSGoogle Scholar
  16. 16.
    M. A. Uman, D. K. McLain, E. P. Krider, Amer. J. Phys., 1975. 43, No.33 (1975).Google Scholar
  17. 17.
    S. Z. Belenky, Wide Atmospheric Showers [in Russian], Atomizdat, Moscow (1987).Google Scholar
  18. 18.
    X. Berton, M. Boratav, and A. Letessier-Selvon, J. Mod. Phys. A, 15, No.15, 2182 (2000).ADSGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • A. N. Karashtin
    • 1
  • Yu. V. Shlyugaev
    • 1
  • A. V. Gurevich
    • 2
  1. 1.Radiophysical Research InstituteNizhny NovgorodRussia
  2. 2.P. N. Lebedev Physical InstituteRussian Academy of SciencesMoscowRussia

Personalised recommendations