Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Application of Padé Approximation to Euler’s constant and Stirling’s formula


The Digamma function \(\varGamma '/\varGamma \) admits a well-known (divergent) asymptotic expansion involving the Bernoulli numbers. Using Touchard-type orthogonal polynomials, we determine an effective bound for the error made when this asymptotic expansion is replaced by its nearly diagonal Padé approximant. By specialization, we obtain new fast converging sequences of approximations to Euler’s constant \(\gamma \). Even though these approximations are not strong enough to prove the putative irrationality of \(\gamma \), we explain why they can be viewed, in some sense, as analogs of Apéry’s celebrated sequences of approximations to \(\zeta (2)\) and \(\zeta (3)\). Similar ideas applied to the asymptotic expansion \(\log \varGamma \) enable us to obtain a refined version of Stirling’s formula.

This is a preview of subscription content, log in to check access.


  1. 1.

    We make here a slight abuse of notation, i.e., \([k-1/k]_F(z)\) should be noted \([k-1/k]_{{\widehat{F}}}(z)\), where \({\widehat{F}}(z):=\sum _{k=0}^\infty m_k z^k \in {\mathbb {K}}[[z]]\).

  2. 2.

    The variable \(-z^2\) instead of z explains why the Padé approximants in this paper are evaluated at \(-\frac{1}{n^2}\) and not \(\frac{1}{n}\) as in [8].


  1. 1.

    Alladi, K., Robinson, M.L.: Legendre polynomials and irrationality. Crelle’s J. 318, 137–155 (1980)

  2. 2.

    Apéry, R.: Irrationality of \(\zeta (2)\) and \(\zeta (3)\). Astérisque 61, 11–13 (1979)

  3. 3.

    Aptekarev, A.I.: Rational Approximants for Euler Constant and Recurrence Relations, Sovremennye Problemy Matematiki (“Current Problems in Mathematics”), vol. 9. MIAN (Steklov Institute), Moscow (2007)

  4. 4.

    Askey, R., Wilson, J.: A set of hypergeometric orthogonal polynomials. SIAM J. Math. Anal. 13(4), 651–655 (1982)

  5. 5.

    Brezinski, C.: Padé-type Approximation and General Orthogonal Polynomials. International Series of Numerical Mathematics, vol. 50. Birkhauser, Basel (1980)

  6. 6.

    Campbell, R.: Les Intégrales eulériennes et leurs applications: étude approfondie de la fonction gamma. Dunod, Paris (1966)

  7. 7.

    Miller, P.D.: Applied Asymptotic Analysis. Graduate Studies in Mathematics, vol. 75. American Mathematical Society, Providence, RI (2006)

  8. 8.

    Prévost, M.: A new proof of the irrationality of \(\zeta (2)\) and \(\zeta (3)\) using Padé approximants. J. Comput. Appl. Math. 67(2), 219–235 (1996)

  9. 9.

    Prévost, M.: Legendre modified moments for Euler’s constant. J. Comput. Appl. Math. 219(2), 484–492 (2008)

  10. 10.

    Prévost, M.: Remainder Padé approximants for the Hurwitz zeta function. Results Math. 74, 22 (2019)

  11. 11.

    Rivoal, T.: Nombres d’Euler, approximants de Padé et constante de Catalan. Ramanujan J. 11(2), 199–214 (2006)

  12. 12.

    Rivoal, T.: Rational approximations for values of derivatives of the Gamma function. Trans. Am. Math. Soc. 361, 6115–6149 (2009)

  13. 13.

    Touchard, J.: Nombres exponentiels et nombres de Bernoulli. Can. J. Math. 8, 305–320 (1956)

  14. 14.

    Wilson, J.: Some hypergeometric orthogonal polynomials. SIAM J. Math. Anal. 11, 690–701 (1980)

Download references


We thank the referee for her or his careful reading of the paper.

Author information

Correspondence to T. Rivoal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Prévost, M., Rivoal, T. Application of Padé Approximation to Euler’s constant and Stirling’s formula. Ramanujan J (2020).

Download citation


  • Euler’s constant
  • Gamma function
  • Digamma function
  • Stirling’s formula
  • Bernoulli numbers
  • Padé approximants
  • Orthogonal polynomials

Mathematics Subject Classification

  • Primary 11Y60
  • 41A21
  • Secondary 11J72
  • 41A60