Advertisement

A proof of the Landsberg–Schaar relation by finite methods

  • Ben MooreEmail author
Article
  • 21 Downloads

Abstract

The Landsberg–Schaar relation is a classical identity between quadratic Gauss sums, often used as a stepping stone to prove the law of quadratic reciprocity. The Landsberg–Schaar relation itself is usually proved by carefully taking a limit in the functional equation for Jacobi’s theta function. In this article, we present a direct proof, avoiding any analysis.

Keywords

Gauss sums Quadratic reciprocity Landsberg–Schaar Hecke reciprocity 

Mathematics Subject Classification

11L05 

Notes

Acknowledgements

The author is extremely grateful to Mike Eastwood for his support and encouragement concerning this article, and most especially for his firm belief that an elementary proof of the Landsberg–Schaar relation should exist! The author would also like to thank Bruce Berndt for reading an earlier draft, Ram Murty for some encouraging remarks, David Roberts for tracking down Gauss’ original evaluation of his eponymous sums and the anonymous referee for suggesting valuable improvements to the article.

References

  1. 1.
    Bellman, R.: A Brief Introduction to Theta Functions. Holt, Rinehart and Winston, Inc., New York (1961)zbMATHGoogle Scholar
  2. 2.
    Berndt, B.C., Evans, R.J., Williams, K.S.: Gauss and Jacobi Sums. Wiley, New York (1998)zbMATHGoogle Scholar
  3. 3.
    Boylan, H., Skoruppa, N.-P.: A quick proof of reciprocity for Hecke Gauss sums. J. Number Theory. 133, 110–114 (2013)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Dickson, L.E.: Introduction to the Theory of Numbers. Dover Publications, New York (1957)zbMATHGoogle Scholar
  5. 5.
    Estermann, T.: On the sign of the Gaussian sum. J. Lond. Math. Soc. 2, 66–67 (1945)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Gauss, C.F.: Summatio quarandum serierium singularium. Comment. Soc. Reg. Sci. Gottingensis 1. https://gdz.sub.uni-goettingen.de/id/PPN602151724 (1811)
  7. 7.
    Hecke, E.: Lectures on the Theory of Algebraic Numbers. Springer, New York (1981)CrossRefGoogle Scholar
  8. 8.
    Husemoller, D., Milnor, J.: Symmetric Bilinear Forms. Ergeb. Math. Grenzgeb, vol. 73. Springer, New York (1971)Google Scholar
  9. 9.
    Landsberg, G.: Zur Theorie der Gaussschen Summen und der linearen Transformation der Thetafunctionen. J. Reine Angew Math. 111, 234–253 (1893)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Murty, M.R., Pacelli, A.: Quadratic reciprocity via theta functions, Ramanujan Math. Society Lecture Notes, vol. 1, pp. 107–116 (2005)Google Scholar
  11. 11.
    Murty, M.R., Pathak, S.: Evaluation of the quadratic Gauss sum. Math. Stud. 86, 139–150 (2017)MathSciNetGoogle Scholar
  12. 12.
    Schaar, M.: Mémoire sur la théorie des résidus quadratiques Acad. R. Sci. Lett. Beaux Arts Belgique 24. https://www.biodiversitylibrary.org/ia/mmoiresdelacad24acad#page/467/mode/1up (1850)
  13. 13.
    Sylvester, J.J.: Question 7382. In: Mathematical Questions with their solutions, from the “Educational Times”. Hodgson, vol. 41, p. 21. https://ia801409.us.archive.org/5/items/mathematicalque10millgoog/ (1884)

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.School of Mathematical SciencesUniversity of AdelaideAdelaideAustralia

Personalised recommendations