Multiple zeta values for classical special functions

  • Tanay Wakhare
  • Christophe VignatEmail author


We compute multiple zeta values (MZVs) built from the zeros of various entire functions, usually special functions with physical relevance. In the usual case, MZVs and their linear combinations are evaluated using a morphism between symmetric functions and multiple zeta values. We show that this technique can be extended to the zeros of any entire function, and as an illustration, we explicitly compute some MZVs based on the zeros of Bessel, Airy, and Kummer hypergeometric functions. We highlight several approaches to the theory of MZVs, such as exploiting the orthogonality of various polynomials and fully utilizing the Weierstrass representation of an entire function. On the way, an identity for Bernoulli numbers by Gessel and Viennot is revisited and generalized to Bessel–Bernoulli polynomials, and the classical Euler identity between the Bernoulli numbers and Riemann zeta function at even argument is extended to this same class.


Multiple zeta values Bessel, Kummer hypergeometric and Airy functions Zeros of special functions Weierstrass factorization 

Mathematics Subject Classification

Primary 11M32 Secondary 33C10 33C15 



None of the authors have any competing interests in the manuscript.


  1. 1.
    Berndt, B.C.: Ramanujan’s Notebooks Part II. Springer, New York (1989)CrossRefGoogle Scholar
  2. 2.
    Broadhurst, D.J., Kreimer, D.: Association of multiple zeta values with positive knots via Feynman diagrams up to \(9\) loops. Phys. Lett. B 393(3–4), 403–412 (1997)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Brychkov, Y.A.: Handbook of Special Functions, Derivatives, Integrals, Series and Other Formulas. CRC Press, Boca Raton, FL (2008)CrossRefGoogle Scholar
  4. 4.
    Byrnes, A., Moll, V., Vignat, C.: Recursion rules for the hypergeometric zeta function Int. J. Number Theory 10, 1761–1782 (2014)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Chen, K.-W., Chung, C.-L., Eie, M.: Sum formulas of multiple zeta values with arguments multiples of a common positive integer. J. Number Theory 177, 479–496 (2017)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Chung, C.-L.: On the sum relation of multiple Hurwitz zeta functions. Quaest. Math. 03, 1–9 (2018)Google Scholar
  7. 7.
    Crandall, R.E.: On the quantum zeta function. J. Phys. A 29, 6795–6816 (1996)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Dickinson, D.: On Lommel and Bessel polynomials. Proc. Am. Math. Soc. 5–6, 946 (1954)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Ding, S., Feng, L., Liu, W.: A combinatorial identity of multiple zeta values with even arguments. Electron. J. Comb. 21–2, 2–27 (2014)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Dunin-Barkowski, P., Sleptsov, A., Smirnov, A.: Kontsevich integral for knots and Vassiliev invariants. Intern. J. Mod. Phys. A 28(17), 1330025–38 (2013)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Flajolet, P., Louchard, G.: Analytic variations on the Airy distribution. Algorithmica 31, 361–377 (2001)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Frappier, C.: A unified calculus using the generalized Bernoulli polynomials. J. Approx. Theory 2, 279–313 (2001)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Genčev, M.: On restricted sum formulas for multiple zeta values with even arguments. Arch. Math. 107, 9–22 (2016)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Gessel, I.M., Viennot, X.G.: Determinants, paths, and plane partitions (1989).
  15. 15.
    Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series, and Products, 7th edn. Translated from the Russian. Elsevier/Academic Press, Amsterdam (2007)CrossRefGoogle Scholar
  16. 16.
    Grosjean, C.C.: The orthogonality property of the Lommel polynomials and a twofold infinity of relations between Rayleigh’s \(\sigma -\)sums. J. Comput. Appl. Math. 10, 355–382 (1984)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Henderson, R.: The Algebra of Multiple Zeta Values, Thesis.
  18. 18.
    Hoffman, M.: An odd variant of multiple zeta values (2016). arXiv:1612.05232
  19. 19.
    Hoffman, M.: On multiple zeta values of even arguments. Int. J. Number Theory 13, 705 (2017)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Ihara, K., Kaneko, M., Zagier, D.: Derivation and double shuffle relations for multiple zeta values. Compos. Math. 142(2), 307–338 (2006)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Macdonald, I.G.: Symmetric Functions and Hall Polynomials, 2nd edn. Oxford University Press, New York (1995)zbMATHGoogle Scholar
  22. 22.
    Preece, C.T.: The product of two generalized hypergeometric functions. Proc. Lond. Math. Soc. 1(370–380), s2–22 (1924)Google Scholar
  23. 23.
    Prudnikov, A.P.: Integrals Series: More Special Functions. Gordon and Breach Science Publishers, Washington, DC (1990)Google Scholar
  24. 24.
    Reid, W.H.: Integral representations for products of Airy functions. Z. Angew. Math. Phys. 46, 159–170 (1995)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Sherstyukov, V.B., Sumin, E.V.: Reciprocal expansion of modified Bessel function in simple fractions and obtaining general summation relationships containing its zeros. J. Phys. 937, 012047 (2017)Google Scholar
  26. 26.
    Simon, B.: Basic Complex Analysis, A Comprehensive Course in Analysis, Part 2A. American Mathematical Society, Providence, RI (2015)zbMATHGoogle Scholar
  27. 27.
    Sneddon, I.N.: On some infinite series involving the zeros of Bessel functions of the first kind. Glasg. Math. J. 4–3, 144–156 (1960)MathSciNetzbMATHGoogle Scholar
  28. 28.
    Watson, G.N.: A Treatise on the Theory of Bessel Functions, Reprint of the Second (1944) Edition. Cambridge University Press, Cambridge (1995)Google Scholar
  29. 29.
    Zagier, D.: Values of zeta functions and their applications. In: First European Congress of Mathematics, vol. II Paris, pp. 497–512 (1992). vol. 120 (1994)Google Scholar
  30. 30.
    Zhang, R.: Sums of zeros for certain special functions. Integral Transform. Spec. Funct. 21(5), 351–365 (2009)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Zudilin, V.: Algebraic relations for multiple zeta values. Russ. Math. Surv. 58, 3–32 (2003)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.University of MarylandCollege ParkUSA
  2. 2.Tulane UniversityNew OrleansUSA
  3. 3.Université Paris SudOrsayFrance

Personalised recommendations