Advertisement

New congruences involving products of two binomial coefficients

  • Guo-Shuai Mao
  • Zhi-Wei SunEmail author
Article

Abstract

Let \(p>3\) be a prime and let a be a positive integer. We show that if Open image in new window or \(a>1\), then with \((-)\) the Jacobi symbol, which confirms a conjecture of Z.-W. Sun. We also establish the following new congruences:

Keywords

Central binomial coefficients Congruences Legendre symbol 

Mathematics Subject Classification

Primary 11B65 11B68 Secondary 05A10 11A07 

Notes

Acknowledgements

The authors would like to thank Prof. Hao Pan and the anonymous referee for helpful comments.

References

  1. 1.
    Ahlgren, S.: Gaussian hypergeometric series and combinatorial congruences. In: Symbolic Computation, Number Theory, Special Functions, Physics and Combinatorics (Gainesville, FI, 1999), pp. 1–12, Dev. Math., Vol. 4, Kluwer, Dordrecht (2001)Google Scholar
  2. 2.
    Lehmer, E.: On congruences involving Bernoulli numbers and the quotients of Fermat and Wilson. Ann. Math. 39, 350–360 (1938)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Mortenson, E.: A supercongruence conjecture of Rodriguez-Villegas for a certain truncated hypergeometric function. J. Number Theory 99, 139–147 (2003)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Mortenson, E.: Supercongruences for truncated \({}_{n+1}F_n\) hypergeometric series with applications to certain weight three newforms. Proc. Am. Math. Soc. 133, 321–330 (2005)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Pan, H., Sun, Z.-W.: A combinatorial identity with application to Catalan numbers. Discret. Math. 306, 1921–1940 (2006)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Pan, H., Sun, Z.-W.: Proof of three conjectures on congruences. Sci. China Math. 57, 2091–2102 (2014)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Ribenboim, P.: The Book of Prime Number Records, 2nd edn. Springer, New York (1989)CrossRefGoogle Scholar
  8. 8.
    Rodriguez-Villegas, F.: Hypergeometric families of Calabi-Yau manifolds, In: Calabi-Yau Varieties and Mirror Symmetry (Toronto, ON, 2001), pp. 223–231, Fields Institute Communications, 38, American Mathematical Society, Providence, RI (2003)Google Scholar
  9. 9.
    Sun, Z.-H.: Super congruences involving Bernoulli polynomials. Int. J. Number Theory 12, 1259–1271 (2016)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Sun, Z.-W.: A congruence for primes. Proc. Am. Math. Soc. 123, 1341–1346 (1995)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Sun, Z.-W.: Binomial coefficients, Catalan numbers and Lucas quotients. Sci. China Math. 53, 2473–2488 (2010)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Sun, Z.-W.: Super congruences and Euler numbers. Sci. China Math. 54, 2509–2535 (2011)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Sun, Z.-W.: Supercongruences involving products of two binomial coefficients. Finite Fields Appl. 22, 24–44 (2013)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Sun, Z.-W.: Fibonacci numbers modulo cubes of primes. Taiwan. J. Math. 17, 1523–1543 (2013)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Sun, Z.-W.: \(p\)-adic congruences motivated by series. J. Number Theory 134, 181–196 (2014)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Sun, Z.-W., Tauraso, R.: On some new congruences for binomial coefficients. Int. J. Number Theory 7, 645–662 (2011)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Sury, B., Wang, T.-M., Zhao, F.-Z.: Identities involving reciprocals of binomial coefficients. J. Integer Seq. 7(2), Article 04.2.8 (2004)Google Scholar
  18. 18.
    Wolstenholme, J.: On certain properties of prime numbers. Q. J. Appl. Math. 5, 35–39 (1862)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of MathematicsNanjing UniversityNanjingPeople’s Republic of China

Personalised recommendations