The Ramanujan Journal

, Volume 50, Issue 2, pp 289–303 | Cite as

On mock theta functions and weight-attached Frobenius partitions

  • S. Sharma
  • M. RanaEmail author


In this paper, we provide the combinatorial interpretations of many mock theta functions and some generalizations using Frobenius partitions with attached weights. We establish our results by providing the interpretations of unsigned versions of mock theta functions leading to the interpretations of the corresponding mock theta functions.


Mock theta functions F-partitions n-Color partitions 

Mathematics Subject Classification

05A17 05A19 11P81 



The authors are thankful to the referee for his/her many valuable suggestions which led to a better presentation of the paper.


  1. 1.
    Agarwal, A.K.: Identities and generating functions for certain classes of F-partitions. Ars combinatoria 57, 65–75 (2000)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Agarwal, A.K.: \(n\)-Color partition theoretic interpretations of some mock theta functions. Electron. J. Combin. 11(3), #N14 (2004)Google Scholar
  3. 3.
    Agarwal, A.K., Andrews, G.E.: Rogers–Ramanujan identities for partitions with N copies of N. J. Combin. Theory Ser. A 45(1), 40–49 (1987)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Agarwal, A.K., Narang, G.: Generalized Frobenius partitions and mock theta functions. Ars combinatoria 99, 439–444 (2011)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Agarwal, A.K., Padmavathamma: Rogers–Ramanujan Type Identities for Burges Restricted Partition Pairs via Restricted Frobenius Partitions, pp. 53–60. Birkhäuser Basel, Basel (2002)Google Scholar
  6. 6.
    Andrews, G.E.: Generalized Frobenius Partitions, vol. 301. American Mathematical Society, Providence (1984)zbMATHGoogle Scholar
  7. 7.
    Eichhorn, D., Sellers, J.A.: Computational proofs of congruences for 2-colored Frobenius partitions. Int. J. Math. Math. Sci. 29(6), 333–340 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Kolitsch, L.W.: An extension of a congruence by Andrews for generalized Frobenius partitions. J. Combin. Theory Ser. A 45(1), 31–39 (1987)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Lovejoy, J.: Ramanujan-type congruences for three colored Frobenius partitions. J. Number Theory 85(2), 283–290 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Ono, K.: Congruences for Frobenius partitions. J. Number Theory 57(1), 170–180 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Rana, M., Agarwal, A.K.: Frobenius partition theoretic interpretation of a fifth order mock theta function. Can. J. Pure Appl. Sci. 3(2), 859–863 (2009)Google Scholar
  12. 12.
    Rana, M., Sareen, J.K.: Split (n+ t)-color partitions and 2-color F-partitions. Contrib. Discrete Math. 12(2), 12–15 (2017)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Sareen, J.K., Rana, M.: Combinatorics of tenth-order mock theta functions. Proc. Indian Acad. Sci. Math. Sci. 126(4), 549–556 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Sharma, S., Rana, M.: Combinatorial interpretations of mock theta functions by attaching weights. Discrete Math. 341(7), 1903–1914 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Sood, G., Agarwal, A.K.: Frobenius partition theoretic interpretations of some basic series identities. Contrib. Discrete Math. 7(2), 54–65 (2012)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Sood, G., Agarwal, A.K.: On a 3-way combinatorial identity. Open J. Discrete Math. 4(04), 89 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of MathematicsThapar Institute of Engineering and TechnologyPatialaIndia

Personalised recommendations