The Ramanujan Journal

, Volume 50, Issue 3, pp 685–715 | Cite as

A study on twisted Koecher–Maass series of Siegel cusp forms via an integral kernel

  • Yves MartinEmail author


We find an explicit integral kernel for the twisted Koecher–Maass series of any degree two Siegel cusp form F, where the twist is realized by an arbitrary Maass waveform whose eigenvalue is in the continuum spectrum. We also obtain the analytic properties of such a kernel (functional equations and analytic continuation), as well as a series representation of it in terms of the degree two Siegel Poincare series. From these properties we deduce the analytic properties of the twisted Koecher–Maass series. Moreover, we express the later as a multiple Dirichlet series involving the Dirichlet series associated to the Fourier–Jacobi coefficients of F. Finally, we get the integral kernel of the untwisted Koecher–Maass series (first studied by Kohnen and Sengupta in any degree) as a limit case of our construction.


Siegel cusp forms Twisted Koecher–Maass series Multiple Dirichlet series Fourier–Jacobi expansion 

Mathematics Subject Classification

Primary 11F46 Secondary 11F50 11M32 


  1. 1.
    Arakawa, T.: Dirichlet series corresponding to Siegel’s modular forms. Math. Ann. 238, 157–173 (1978)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Arakawa, T., Makino, I., Sato, F.: Converse theorem for not necessarily cuspidal Siegel modular forms of degree \(2\) and Saito–Kurokawa lifting. Comment. Math. Univ. St. Paul. 50, 197–234 (2001)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Berndt, R.: \(L\)-functions for Jacobi forms à la Hecke. Manuscr. Math. 84, 101–112 (1994)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Breulmann, S., Kohnen, W.: Twisted Koecher–Maass series and spinor zeta functions. Nagoya Math. J. 155, 153–160 (1999)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Cohen, H.: Sur certaines sommes de séries liées aux périodes de formes modulaires. C.R. Journées de Théorie Analytique et Élémentaire des Nombres, Publ. 2 Univ. de Limoges, Limoges (1981)Google Scholar
  6. 6.
    Diamantis, N., O’Sullivan, C.: Kernels of \(L\)-functions of cusp forms. Math. Ann. 346, 897–929 (2010)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Eichler, M., Zagier, D.: The Theory of Jacobi Forms. Birkhauser, Boston (1985)CrossRefGoogle Scholar
  8. 8.
    Hörmander, L.: An Introduction to Complex Analysis in Several Variables. North Holland Publ. Co., Amsterdam (1990)zbMATHGoogle Scholar
  9. 9.
    Imai, K.: Generalization of Hecke’s correspondece to Siegel modular forms. Am. J. Math. 102, 903–936 (1980)CrossRefGoogle Scholar
  10. 10.
    Katsurada, K.: Complete asymptotic expansions associated with Epstein zeta-function. Ramanujan J. 14, 249–275 (2007)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Klingen, H.: Introductory Lectures on Siegel Modular Forms. Cambridge University Press, Cambridge (1990)CrossRefGoogle Scholar
  12. 12.
    Koecher, M.: Über Dirichlet–Reihen mit Funktionalgleichung. J. Reine Angew. Math. 192, 1–23 (1953)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Kohnen, W.: Nonvanishing of Hecke \(L\)-functions associated to cusp forms inside the critical strip. J. Number Theory 67, 182–89 (1997)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Kohnen, W., Das, S.: Nonvanishing of Koecher–Maass series attached to Siegel cusp forms. Adv. Math. 281, 624–669 (2015)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Kohnen, W., Sengupta, J.: On Koecher–Maass series of Siegel modular forms. Math. Z. 242, 149–157 (2002)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Martin, Y.: A converse theorem for Jacobi forms. J. Number Theory 61, 181–193 (1996)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Martin, Y.: On integral kernels for Dirichlet series associated to Jacobi forms. J. Lond. Math. Soc. 90, 67–88 (2014)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Maass, H.: Modulformen zweiten Grades und Dirichletreihen. Math. Ann. 122, 90–108 (1950)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Maass, H.: Siegel Modular Forms and Dirichlet Series. Lecture Notes, vol. 216. Springer, Heidelberg (1971)CrossRefGoogle Scholar
  20. 20.
    Mizuno, Y.: An explicit arithmetic formula for the Fourier coefficients of Siegel–Eisenstein series of degree two and square-free odd levels. Math. Z. 263, 837–860 (2009)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Rudin, W.: Real and Complex Analysis. McGraw-Hill, New York (1970)zbMATHGoogle Scholar
  22. 22.
    Siegel, C.: Über die analytische Theorie der quadratischen Formen. Ann. Math. 36, 527–606 (1935). Complete Works v. I, Chandrasekharan, Maass 326–405MathSciNetCrossRefGoogle Scholar
  23. 23.
    Terras, A.: Harmonic Analysis on Symmetric Spaces and Applications II. Springer, Heidelberg (1988)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Departamento de Matemáticas, Facultad de CienciasUniversidad de ChileSantiagoChile

Personalised recommendations