Advertisement

Quadratic sums of Gaussian q-binomial coefficients and Fibonomial coefficients

  • Wenchang Chu
  • Emrah Kılıç
Article
  • 49 Downloads

Abstract

In this paper we evaluate quadratic sums of Gaussian q-binomial coefficients with two additional parameters. We obtain a general summation theorem using a combination of Heine’s transformation, the q-Pfaff–Saalschutz theorem and the q-Kummer sum. Consequently several identities for generalized Fibonomial–Lucanomial coefficients are obtained by specifying the parameter p and the base q.

Keywords

Basic hypergeometric series q-Binomial coefficient Heine transformation q-Pfaff–Saalschutz summation formula q-Kummer sum Fibonomial and Lucanomial coefficients 

References

  1. 1.
    Chen, X., Chu, W.: Summation formulae for a class of terminating balanced \(q\)-series. J. Math. Anal. Appl. 451(1), 508–523 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Gasper, G., Rahman, M.: Basic Hypergeometric Series, 2nd edn. Cambridge University Press, Cambridge (2004)CrossRefzbMATHGoogle Scholar
  3. 3.
    Gould, H.W.: The bracket function and Fountené-Ward generalized binomial coefficients with application to fibonomial coefficients. Fibonacci Q. 7, 23–40 (1969)zbMATHGoogle Scholar
  4. 4.
    Hoggatt Jr., V.E.: Fibonacci numbers and generalized binomial coefficients. Fibonacci Q. 5, 383–400 (1967)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Kılıç, E., Prodinger, H.: Evaluation of sums involving Gaussian \(q\)-binomial coefficients with rational weight functions. Int. J. Number Theory 12(2), 495–504 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Kılıç, E., Prodinger, H.: Closed form evaluation of sums containing squares of Fibonomial coefficients. Math. Slovaca 66(3), 757–765 (2016)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Kılıç, E., Prodinger, H.: Closed form evaluation of restricted sums containing squares of Fibonomial coefficients. U.P.B. Sci. Bull. Ser. A 78(4), 57–66 (2016)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Kılıç, E., Prodinger, H., Akkuş, I., Ohtsuka, H.: Formulas for Fibonomial sums with generalized Fibonacci and Lucas coefficients. Fibonacci Q. 49(4), 320–329 (2011)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Kılıç, E., Ohtsuka, H., Akkuş, I.: Some generalized Fibonomial sums related with the Gaussian \(q\)-binomial sums. Bull. Math. Soc. Sci. Math. Roum. 55(1), 51–61 (2012)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Li, N.N., Chu, W.: \(q\)-Derivative operator proof for a conjecture of Melham. Discret. Appl. Math. 177, 158–164 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Seibert, J., Trojovsky, P.: On some identities for the Fibonomial coefficients. Math. Slovaca 55, 9–19 (2005)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Trojovsky, P.: On some identities for the Fibonomial coefficients via generating function. Discret. Appl. Math. 155(15), 2017–2024 (2007)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Mathematics and StatisticsZhoukou Normal UniversityZhoukouPeople’s Republic of China
  2. 2.Mathematics DepartmentTOBB University of Economics and TechnologySögütözüTurkey
  3. 3.Dipartimento di Matematica e Fisica “Ennio De Giorgi”Università del SalentoLecceItaly

Personalised recommendations