Advertisement

The Ramanujan Journal

, Volume 49, Issue 1, pp 87–96 | Cite as

The partition function p(n) in terms of the classical Möbius function

  • Mircea MercaEmail author
  • Maxie D. Schmidt
Article

Abstract

In this paper, we investigate decompositions of the partition function p(n) from the additive theory of partitions considering the famous Möbius function \(\mu (n)\) from multiplicative number theory. Some combinatorial interpretations are given in this context. Our work extends several analogous identities proved recently relating p(n) and Euler’s totient function \(\varphi (n)\).

Keywords

Lambert series Möbius function q-series partition function 

Mathematics Subject Classification

11A25 11P81 05A17 05A19 

Notes

Acknowledgements

The authors thank the referees for their helpful comments.

References

  1. 1.
    Alladi, K., Erdős, P.: On an additive arithmetic function. Pac. J. Math. 71(2), 275–294 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Andrews, G.E.: The Theory of Partitions, Cambridge Mathematical Library, Cambridge University Press, Cambridge. Reprint of the 1976 original. MR1634067 (99c:11126) (1998)Google Scholar
  3. 3.
    Hardy, G.H., Wright, E.M.: An Introduction to the Theory of Numbers, 5th edn. Clarendon Press, Oxford (1979)zbMATHGoogle Scholar
  4. 4.
    Jameson, M., Schneider, R.: Combinatorial applications of Möbius inversion. Proc. Am. Math. Soc. 142(9), 2965–2971 (2014)CrossRefzbMATHGoogle Scholar
  5. 5.
    Merca, M.: The Lambert series factorization theorem. Ramanujan J. 44(2), 417–435 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Merca, M., Schmidt, M.D.: A partition identity related to Stanley’s theorem. Am. Math. Monthly (accepted, to appear)Google Scholar
  7. 7.
    Schneider, R.: Arithmetic of partitions and the \(q\)-bracket operator. Proc. Am. Math. Soc. 145(5), 1953–1968 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Sloane, N.J.A.: The Online Encyclopedia of Integer Sequences. https://oeis.org/ (2017)
  9. 9.
    Wakhare, T.: Special classes of \(q\)-bracket operators. Ramanujan J.  https://doi.org/10.1007/s11139-017-9956-8 (2017)

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Academy of Romanian ScientistsBucharestRomania
  2. 2.School of MathematicsGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations