Icosahedral invariants and a construction of class fields via periods of K3 surfaces
Article
First Online:
Received:
Accepted:
- 46 Downloads
Abstract
In the theory of complex multiplication, it is important to construct class fields over CM fields. In this paper, we consider explicit K3 surfaces parametrized by Klein’s icosahedral invariants. Via the periods and the Shioda–Inose structures of K3 surfaces, the special values of icosahedral invariants generate class fields over quartic CM fields. Moreover, we give an explicit expression of the canonical model of the Shimura variety for the simplest case via the periods of K3 surfaces.
Keywords
Class fields K3 surfaces Shimura varieties Abelian varieties Complex multiplication Hilbert modular functions Quartic fieldsMathematics Subject Classification
Primary 11G45 Secondary 14J28 14G35 11F46 11G15 11R16Notes
Acknowledgements
The author would like to thank Professor Hironori Shiga for helpful advice and valuable suggestions, and also to Professor Kimio Ueno for kind encouragement.
References
- 1.Clinger, A., Doran, C.: Lattice polarized \(K3\) surfaces and Siegel modular forms. Adv. Math. 231, 172–212 (2012)MathSciNetCrossRefMATHGoogle Scholar
- 2.Elkies, N., Kumar, A.: \(K3\) Surfaces and equations for Hilbert modular surfaces. Algebra Number Theory 8, 2297–2411 (2014)MathSciNetCrossRefMATHGoogle Scholar
- 3.Fuertes, Y., González-Diez, G.: Fields of moduli and definition of hyperelliptic covers. Arch. Math. 86(5), 398–408 (2006)MathSciNetCrossRefMATHGoogle Scholar
- 4.Gundlach, K.: Die Bestimmung der Funktionen zur Hilbertschen Modulgruppe des Zahlköpers \(Q(\sqrt{5})\). Math. Ann. 152, 226–256 (1963)MathSciNetCrossRefMATHGoogle Scholar
- 5.Gunji, K.: Defining equations of the universal abelian surfaces with level three structure. Manuscr. Math. 119, 61–96 (2006)MathSciNetCrossRefMATHGoogle Scholar
- 6.Hardy, K., Hudson, R.H., Richmann, D., Williams, K.S., Holtz, N.M.: Calculation of class numbers of imaginary cyclic quartic fields. Math. Comput. 49, 615–620 (1987)MathSciNetCrossRefMATHGoogle Scholar
- 7.Hardy, K., Hudson, R.H., Richmann, D., Williams, K.S.: Determination of all imaginary cyclic quartic fields with class number 2. Trans. Am. Math. 311, 1–55 (1989)MathSciNetMATHGoogle Scholar
- 8.Hashimoto, K., Nagano, A., Ueda, K.: Modular surfaces associated with toric K3 surfaces (2014). arXiv:1403.5818
- 9.Hirzebruch, F.: Lecture Notes in Mathematics. The ring of Hilbert modular forms for real quadratic fields of small discriminant, vol. 627. Springer, Berlin (1977)Google Scholar
- 10.Huard, J.G., Spearman, B.K., Williams, K.S.: Integral basis for quartic fields with quadratic subfields. J. Number Theory 51, 87–102 (1995)MathSciNetCrossRefMATHGoogle Scholar
- 11.Hudson, R.H., Williams, K.S.: The integers of a cyclic quartic field. Rocky Mt. J. Math. 20, 145–150 (1990)MathSciNetCrossRefMATHGoogle Scholar
- 12.Igusa, J.: Arithmetic variety of moduli for genus two. Ann. Math. 72(3), 612–649 (1960)MathSciNetCrossRefMATHGoogle Scholar
- 13.Klein, F.: Vorlesungen über das Ikosaeder und die Auflösung der Gleichungen vom fünften Grade, Tauber (1884)Google Scholar
- 14.Kumar, A.: K3 surfaces associated to curves of genus two. Int. Math. Res. Not. 16 (2008). ArticleID: rnm165Google Scholar
- 15.Lauter, K., Yang, T.H.: Computing genus 2 curves from invariants on the Hilbert moduli space. J. Number Theory 131, 936–958 (2011)MathSciNetCrossRefMATHGoogle Scholar
- 16.Müller, R.: Hilbertsche Modulformen und modulfunktionen zu \(\mathbb{Q}(\sqrt{5})\). Arch. Math. 45, 239–251 (1985)MathSciNetCrossRefMATHGoogle Scholar
- 17.Mumford, D.: On the equations defining abelian varieties I. Invent. Math. 1, 287–354 (1967)MathSciNetCrossRefMATHGoogle Scholar
- 18.Murabayashi, N., Umegaki, A.: Determination of all \(\mathbb{Q}\)- rational CM-points in the moduli space of principally polarized abelian surfaces. J. Algebra 235, 267–274 (2001)MathSciNetCrossRefMATHGoogle Scholar
- 19.Nagano, A.: A theta expression of the Hilbert modular functions for \(\sqrt{5}\) via period of K3 surfaces. Kyoto J. Math. 53(4), 815–843 (2013)MathSciNetCrossRefMATHGoogle Scholar
- 20.Nagano, A.: Double integrals on a weighted projective plane and the Hilbert modular functions for \(\mathbb{Q}(\sqrt{5})\). Acta Arith. 167, 327–345 (2015)MathSciNetCrossRefMATHGoogle Scholar
- 21.Nagano, A.: Icosahedral invariants and Shimura curves. J. Theor. Nom. Bordeaux (2017)Google Scholar
- 22.Nagano, A., Shiga, H.: Modular map for the family of abelian surfaces via elliptic K3 surfaces. Math. Nachr. 288, 89–114 (2014)MathSciNetCrossRefMATHGoogle Scholar
- 23.Nagano, A., Shiga, H.: To the Hilbert class field from the hypergeometric modular function. J. Number Theory 165, 408–430 (2016)MathSciNetCrossRefMATHGoogle Scholar
- 24.Shimura, G.: On the theory of automorphic functions. Ann. Math. 70, 101–144 (1959)MathSciNetCrossRefMATHGoogle Scholar
- 25.Shimura, G.: On purely transcendental fields of automorphic functions of several variables. Osaka J. Math. 1, 1–14 (1963)MathSciNetMATHGoogle Scholar
- 26.Shimura, G.: Construction of class fields and zeta functions of algebraic curves. Ann. Math. 85, 58–159 (1967)MathSciNetCrossRefMATHGoogle Scholar
- 27.Shimura, G.: On abelian varieties with complex multiplication. Proc. Lond. Math. Soc. 34(3), 65–86 (1977)MathSciNetCrossRefMATHGoogle Scholar
- 28.Shimura, G.: Abelian Varieties with Complex Multiplication and Modular Functions. Princeton University Press, Princeton (1997)MATHGoogle Scholar
- 29.van der Geer, G.: Hilbert Modular Surfaces. Ergebnisse der Mathematik und ihrer Grenzgebiete. Springer, Berlin (1988)CrossRefMATHGoogle Scholar
- 30.Weil, A.: On the theory of complex multiplication. In: Proceedings of International Symposium Algebraic Number Theory, pp. 9–22 (1955)Google Scholar
Copyright information
© Springer Science+Business Media New York 2017