Advertisement

The Ramanujan Journal

, Volume 42, Issue 1, pp 199–221 | Cite as

A Diophantine approach to the three and four exponentials conjectures

  • Lee A. Butler
Article
  • 237 Downloads

Abstract

Some special cases of Wilkie’s conjecture are shown to be equivalent to real versions of the three and four exponentials conjectures. Wilkie’s conjecture is an open problem originating in model theory that concerns the density of algebraic points in sets defined using the exponential function; the latter conjectures concern the algebraic nature of values of the exponential function.

Keywords

Transcendence Exponential function Logarithms of algebraic numbers Algebraic independence 

Mathematics Subject Classification

03C64 11J81 

Notes

Acknowledgments

Many thanks to the anonymous referee for numerous improvements to the paper including a substantial strengthening of Theorem 9.

References

  1. 1.
    Alaoglu, L., Erdös, P.: On highly composite and similar numbers. Trans. Am. Math. Soc. 56(3), 448–469 (1944)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Ax, J.: On Schanuel’s conjectures. Ann. Math. 93, 252–268 (1971)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Brownawell, W.D.: The algebraic independence of certain numbers related by the exponential function. J. Number Theory 6(1), 22–31 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Butler, L.A.: Some cases of Wilkie’s conjecture. Bull. Lond. Math. Soc. 44(4), 642–660 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Diaz, G.: Utilisation de la conjugaison complexe dans l’étude de la transcendance de valeurs de la fonction exponentielle usuelle. Journal de théorie des nombres de Bordeaux 16(3), 535–553 (2004)CrossRefGoogle Scholar
  6. 6.
    Jones, G.O., Thomas, M.E.M.: The density of algebraic points on certain Pfaffian surfaces. Q. J. Math. 63(3), 637–651 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Lang, S.: Introduction to Transcendental Numbers. AddisonWesley, Reading (1996)zbMATHGoogle Scholar
  8. 8.
    Pila, J.: Counting rational points on a certain exponential-algebraic surface. Ann. Inst. Fourier 60(2), 489–514 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Pila, J., Wilkie, A.J.: The rational points of a definable set. Duke Math. J. 133(3), 591–616 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Ramachandra, K.: Contributions to the theory of transcendental numbers I, II. Acta Arith. 14, 65–72, 73–88 (1967/1968)Google Scholar
  11. 11.
    Waldschmidt, M.: Solution du huitième problème de schneider. J. Number Theory 5(3), 191–202 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Waldschmidt, M.: On the transcendence methods of Gel’fond and Schneider in several variables. In: New Advances in Transcendence Theory. Cambridge University Press, Cambridge (1988)Google Scholar
  13. 13.
    Waldschmidt, M.: Diophantine approximation on linear algebraic groups: transcendence properties of the exponential function in several variables. Grundlehren der mathematischen Wissenschaften, vol. 326. Springer, Berlin (2000)Google Scholar
  14. 14.
    Waldschmidt, M.: Further variations on the six exponentials theorem. Hardy Ramanujan J. 28, 1–9 (2005)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Waldschmidt, M.: Variations on the six exponentials theorem. In: Algebra and Number Theory. Hindustan Book Agency, (2005)Google Scholar
  16. 16.
    Wilkie, A.J.: Model completeness results for expansions of the ordered field of real numbers by restricted Pfaffian functions and the exponential function. J. Am. Math. Soc. 9, 1051–1094 (1996)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Heilbronn Institute for Mathematical ResearchUniversity of BristolBristolUK

Personalised recommendations