The Ramanujan Journal

, Volume 39, Issue 1, pp 83–93 | Cite as

On some asymptotic formulas in the theory of concave compositions



We determine asymptotic formulas for the number of concave compositions. To be more precise, we examine concave compositions of even length and of odd length (type 1 and type 2) as denoted by Andrews. Applying the modified Circle Method by Wright to their generating functions, we prove new asymptotic formulas for these special compositions.


Asymptotics Partitions Concave compositions Stacks 

Mathematics Subject Classification

05A16 05A17 11P55 11P82 



I thank Professor Bringmann for supervising my master thesis which was the basis of this paper. I also thank Ben Kane, Larry Rolen, and Miguel Zapata Rolón for useful correspondence.


  1. 1.
    Abramovitz, M., Stegun, I.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Reprint of the 1972 edition. Dover, New York (1984)Google Scholar
  2. 2.
    Alladi, K., Garvan, F.: Partitions, q-Series, and Modular Forms. Springer, New York (2010)Google Scholar
  3. 3.
    Andrews, G.: The Theory of Partitions. Cambridge University Press, Cambridge (1998)MATHGoogle Scholar
  4. 4.
    Andrews, G.: Concave compositions. Electron. J. Comb. 18(2), 161–171 (2011)Google Scholar
  5. 5.
    Apostol, T.: Introduction to Analytic Number Theory. Springer, New York (1976)MATHGoogle Scholar
  6. 6.
    Apostol, T.: Modular Functions and Dirichlet Series in Number Theory. Springer, New York (1976)MATHCrossRefGoogle Scholar
  7. 7.
    Bringmann, K., Mahlburg, K.: Asymptotic formulas for stacks and unimodal sequences (2013), submitted for publicationGoogle Scholar
  8. 8.
    Bringmann, K., Manschot, J.: Asymptotic formulas for coefficients of inverse theta functions. Commun. Num. Theor. Phys. 7, 497 (2013)MATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    Eichhorn, D., Ono K.: Congruences for partition functions, Analytic number theory. In: Proceedings of a Conference in Honor of Heini Halberstam, vol. 1, pp. 309–321, May 16–20, 1995. Birkhäuser, Urbana (1996)Google Scholar
  10. 10.
    Freitag, E., Busan, R.: Function Theory 1 (Funktionentheorie 1). 4th Corrected and Expanded Edition. Springer, Berlin (2006)Google Scholar
  11. 11.
    Grafakos, L.: Classical Fourier Analysis, 2nd edn. Springer, New York (2008)MATHGoogle Scholar
  12. 12.
    Hardy, G., Ramanujan, S.: Asymptotic formulae in combinatory analysis. Proc. Lond. Math. Soc. 17(2), 75–115 (1918)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Hardy, G., Wright, E.: An Introduction to the Theory of Numbers. Edited and revised by D.R. Heath-Brown, J.H. Silverman. With a foreword by Andrew Wiles, 6th edn. Oxford University Press, Oxford (2008)Google Scholar
  14. 14.
    Koecher, M., Krieg, A.: Elliptic Functions and Modular Forms (Elliptische Funktionen und Modulformen). Springer, Berlin (1998)MATHGoogle Scholar
  15. 15.
    Rademacher, H.: On the partition function p(n). Proc. Natl. Acad. Sci. USA 43, 241–254 (1937)Google Scholar
  16. 16.
    Rademacher, H., Zuckerman, H.: On the fourier coefficients of certain modular forms of positive dimension. Ann. Math. 39(2), 433–462 (1938)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Ramanujan, S.: Collected Papers of Srinivasa Ramanujan. Edited by Hardy, G.H., Seshu Aiyar, P.V., Wilson, B.M. AMS Chelsea, Providence (2000)Google Scholar
  18. 18.
    Star, Z.: An asymptotic formula in the theory of compositions. Aequ. Math. 13, 279–284 (1975)MATHMathSciNetCrossRefGoogle Scholar
  19. 19.
    Whittaker, E., Watson, G.: A Course of Modern Analysis, 2nd edn. Watchmaker, Seaside (2012)Google Scholar
  20. 20.
    Wright, E.: Stacks. Q. J. Math. 19, 313–320 (1968)MATHCrossRefGoogle Scholar
  21. 21.
    Wright, E.: Stacks (II). Q. J. Math. 22, 107–116 (1971)MATHCrossRefGoogle Scholar
  22. 22.
    Zagier, D.: The Mellin transform and other useful analytic techniques, Appendix to E. Zeidler, Quantum Field Theory I: Basics in Mathematics and Physics. A Bridge Between Mathematicians and Physicists, pp. 305–323. Springer, New York (2006)Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of CologneCologneGermany

Personalised recommendations