Skip to main content
Log in

Updating the error term in the prime number theorem

  • Published:
The Ramanujan Journal Aims and scope Submit manuscript

Abstract

An improved estimate is given for \(|\theta (x) -x|\), where \(\theta (x) = \sum _{p\le x} \log p\). Four applications are given: the first to arithmetic progressions that have points in common, the second to primes in short intervals, the third to a conjecture by Pomerance and the fourth to an inequality studied by Ramanujan.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. There is also the result of Ford [7]

    $$\begin{aligned} \pi (x) - \text {li}(x) = O( x \exp \{-0.2098 (\log x)^{3/5} (\log \log x)^{-1/5}\}). \end{aligned}$$

    It appears that this result has not been made explicit.

References

  1. Berndt, B.C.: Ramanujan’s Notebooks: Part IV. Springer, New York (1993)

    Google Scholar 

  2. Dudek, A.W.: An Explicit Result for Primes Between Cubes (January 2014). arXiv:1401.4233v1

  3. Dudek, A.W., Platt, D.J.: Solving a curious inequality of Ramanujan. Exp. Math. (in press). arXiv:1407.1901

  4. Dusart, P.: Autour de la fonction qui compte le nombre de nombres premiers. PhD thesis, Université de Limoges (1998)

  5. Dusart, P.: Estimates of Some Functions Over Primes Without R.H. (2010). arXiv:1002.0442v1

  6. Faber, L., Kadiri, H.: New bounds for \(\psi (x)\). Math. Comp. (2014). doi:10.1090/S0025-5718-2014-02886-X

  7. Ford, K.: Vinogradov’s integral and bounds for the Riemann zeta function. Proc. Lond. Math. Soc. 85(3), 565–633 (2002)

    Article  MATH  Google Scholar 

  8. Ford, K.: Maximal collections of intersecting arithmetic progressions. Combinatorica 23(2), 263–281 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  9. Ford, K.: A strong form of a problem of R. L. Graham. Can. Math. Bull. 47(3), 358–368 (2004)

    Article  MATH  Google Scholar 

  10. Hajdu, L., Saradha, N., Tijdeman, R.: On a conjecture of Pomerance. Acta Arith. 155(2), 175–184 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  11. Helfgott, H.: Major Arcs for Goldbach’s Problem (2013). arXiv:1305.2897v2

  12. Kadiri, H.: Une région explicite sans zéros pour la fonction \(\zeta \) de Riemann. Acta Arith. 117(4), 303–339 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  13. Kotnik, T.: The prime-counting function and its analytic approximations. Adv. Comput. Math. 29(1), 55–70 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  14. Nicely, T.R., Nyman, B.: New prime gaps between \(10^{15}\) and \(5\times 10^{16}\). J. Integer Seq. 6(3), 1–6 (2003)

    MathSciNet  Google Scholar 

  15. Platt, D.J.: Computing \(\pi (x)\) analytically. Math. Comp. (2014). doi:10.1090/S0025-5718-2014-02884-6

  16. Pomerance, C.: A note on the least prime in an arithmetic progression. J. Number Theory 12, 218–223 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  17. Ramaré, O., Rumely, R.: Primes in arithmetic progressions. Math. Comput. 65(213), 397–425 (1996)

    Article  MATH  Google Scholar 

  18. Ramaré, O., Saouter, Y.: Short effective intervals containing primes. J. Number Theory 98, 10–33 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  19. Rosser, J.B., Schoenfeld, L.: Approximate formulas for some functions of prime numbers. Ill. J. Math. 6, 64–94 (1962)

    MATH  MathSciNet  Google Scholar 

  20. Rosser, J.B., Schoenfeld, L.: Sharper bounds for the Chebyshev functions \(\theta (x)\) and \(\psi (x)\). Math. Comput. 29(129), 243–269 (1975)

    MATH  MathSciNet  Google Scholar 

  21. Schoenfeld, L.: Sharper bounds for the Chebyshev functions \(\theta (x)\) and \(\psi (x)\), II. Math. Comput. 30(134), 337–360 (1976)

    MATH  MathSciNet  Google Scholar 

  22. Togbé, A., Yang, S.: Proof of the \({P}\)-integer conjecture of Pomerance. J. Number Theory 140, 226–234 (2014)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

I am grateful to Szymon Brzostowski for verifying one of the computations leading to Corollary 2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tim Trudgian.

Additional information

Dedicated to MG Johnson, RJ Harris, PM Siddle and NM Lyon, all of whom enabled me to work two extra days on this article.

This article was supported by Australian Research Council DECRA Grant DE120100173.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trudgian, T. Updating the error term in the prime number theorem. Ramanujan J 39, 225–234 (2016). https://doi.org/10.1007/s11139-014-9656-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11139-014-9656-6

Keywords

Mathematics Subject Classification

Navigation