The Ramanujan Journal

, Volume 35, Issue 3, pp 361–390 | Cite as

The Zagier polynomials. Part II: Arithmetic properties of coefficients

  • Mark W. Coffey
  • Valerio De Angelis
  • Atul Dixit
  • Victor H. Moll
  • Armin Straub
  • Christophe Vignat
Article

Abstract

The modified Bernoulli numbers
$$\begin{aligned} B_{n}^{*} = \sum _{r=0}^{n} \left( {\begin{array}{c}n+r\\ 2r\end{array}}\right) \frac{B_{r}}{n+r}, \quad n > 0 \end{aligned}$$
introduced by Zagier in \(1998\) were recently extended to the polynomial case by replacing \(B_{r}\) by the Bernoulli polynomials \(B_{r}(x)\). Arithmetic properties of the coefficients of these polynomials are established here. In particular, the \(2\)-adic valuation of the modified Bernoulli numbers is determined. A variety of analytic, umbral, and asymptotic methods is used to analyze these polynomials.

Keywords

2-Adic valuations Digamma function Umbral calculus  Zagier polynomials 

Mathematics Subject Classification

Primary 11B68 11B83 

References

  1. 1.
    Abramowitz, M., Stegun, I.: Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables. Dover, New York (1972)MATHGoogle Scholar
  2. 2.
    Alzer, H.: On some inequalities for the gamma and psi functions. Math. Comput. 66, 373–389 (1997)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Brychkov, Y.A.: Handbook of Special Functions. Derivatives, Integrals, Series and Other Formulas. Taylor and Francis, Boca Raton (2008)MATHGoogle Scholar
  4. 4.
    Carlitz, L.: A note on the Staudt–Clausen theorem. Am. Math. Mon. 64, 19–21 (1957)CrossRefMATHGoogle Scholar
  5. 5.
    Comtet, L.: Advanced Combinatorics. D. Reidel Publishing Co., Dordrecht (1974)CrossRefMATHGoogle Scholar
  6. 6.
    Dixit, A., Moll, V., Vignat, C.: The Zagier modification of Bernoulli numbers and a polynomial extension, Part I. Ramanujan J. 33, 379–422 (2014)Google Scholar
  7. 7.
    Gradshteyn, I.S., Ryzhik, I.M.: In: Jeffrey, A., Zwillinger, D. (eds.) Table of Integrals, Series, and Products, 7th edn. Academic Press, New York (2007)Google Scholar
  8. 8.
    Guo, B.N., Qi, F.: Refinements of lower bounds for polygamma functions (2009). http://arxiv.org/abs/0903.1996v1
  9. 9.
    Guo, B.N., Qi, F.: Sharp inequalities for the psi function and harmonic numbers (2010). http://arxiv.org/abs/0902.2524
  10. 10.
    Guo, B.N., Chen, R.J., Qi, F.: A class of completely monotonic functions involving the polygamma functions. J. Math. Anal. Approx. Theory 1, 124–134 (2006)MATHMathSciNetGoogle Scholar
  11. 11.
    Ireland, K., Rosen, M.: A Classical Introduction to Number Theory, 2nd edn. Springer, New York (1990)CrossRefMATHGoogle Scholar
  12. 12.
    Johnson, W.P.: The curious history of Faà di Bruno’s formula. Am. Math. Mon. 109, 217–234 (2002)CrossRefMATHGoogle Scholar
  13. 13.
    Olver, F.W.J.: Asymptotics and Special Functions. Academic Press, New York (1974).Google Scholar
  14. 14.
    Petkovšek, M., Wilf, H., Zeilberger, D.: A = B, 1st edn. AK Peters Ltd., Natick (1996)MATHGoogle Scholar
  15. 15.
    Riordan, J.: Combinatorial Identities, 1st edn. Wiley, New York (1968)MATHGoogle Scholar
  16. 16.
    Rogers, M.D.: Partial fractions expansions and identities for products of Bessel functions. J. Math. Phys. 46, 043509 (2005)CrossRefMathSciNetGoogle Scholar
  17. 17.
    Zagier, D.: A modified Bernoulli number. Nieuw Archief voor Wiskunde 16, 63–72 (1998)MATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Mark W. Coffey
    • 1
  • Valerio De Angelis
    • 2
  • Atul Dixit
    • 3
  • Victor H. Moll
    • 3
  • Armin Straub
    • 4
  • Christophe Vignat
    • 3
    • 5
  1. 1.Department of PhysicsColorado School of MinesGoldenUSA
  2. 2.Department of MathematicsXavier University of LouisianaNew OrleansUSA
  3. 3.Department of MathematicsTulane UniversityNew OrleansUSA
  4. 4.Department of MathematicsUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  5. 5.L.S.S. SupelecUniversite d’OrsayOrsayFrance

Personalised recommendations