The Ramanujan Journal

, Volume 36, Issue 3, pp 455–481 | Cite as

On conjectures of Sato–Tate and Bruinier–Kohnen

  • Sara Arias-de-Reyna
  • Ilker Inam
  • Gabor Wiese


This article covers three topics. (1) It establishes links between the density of certain subsets of the set of primes and related subsets of the set of natural numbers. (2) It extends previous results on a conjecture of Bruinier and Kohnen in three ways: the CM-case is included; under the assumption of the same error term as in previous work one obtains the result in terms of natural density instead of Dedekind–Dirichlet density; the latter type of density can already be achieved by an error term like in the prime number theorem. (3) It also provides a complete proof of Sato–Tate equidistribution for CM modular forms with an error term similar to that in the prime number theorem.


Half-integral weight modular forms Shimura lift Sato–Tate equidistribution Fourier coefficients of modular forms Density of sets of primes 

Mathematics Subject Classification

11F37 11F30 11F80 11F11 



The authors would like to thank Juan Arias de Reyna for his remarks. They also thank Jeremy Rouse for explanations concerning [18]. I.I. and G.W. are grateful to Winfried Kohnen for interesting discussions. Thanks are also due to the anonymous referee for helpful suggestions concerning the presentation of the paper.


  1. 1.
    Akiyama, S., Tanigawa, Y.: Calculation of values of L-functions associated to elliptic curves. Math. Comput. 68(227), 1201–1231 (1999) CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Barnet-Lamb, T., Geraghty, D., Harris, M., Taylor, R.: A family of Calabi–Yau varieties and potential automorphy II. Publ. Res. Inst. Math. Sci. 47(1), 29–98 (2011) CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Bruinier, J.H., Kohnen, W.: Sign changes of coefficients of half integral weight modular forms. In: Edixhoven, B., van der Geer, G., Moonen, B. (eds.) Modular Forms on Schiermonnikoog, pp. 57–66. Cambridge University Press, Cambridge (2008) CrossRefGoogle Scholar
  4. 4.
    Delange, H.: Sur la distribution des entiers ayant certaines propriétés. Ann. Sci. Éc. Norm. Super. 73(3), 15–74 (1956) zbMATHMathSciNetGoogle Scholar
  5. 5.
    Delange, H.: Un théorème sur les fonctions arithmétiques multiplicatives et ses applications. Ann. Sci. Éc. Norm. Super. 78(3), 1–29 (1961) zbMATHMathSciNetGoogle Scholar
  6. 6.
    Hecke, E.: Eine neue Art von Zetafunktionen und ihre Beziehungen zur Verteilung der Primzahlen. Math. Z. 6(1–2), 11–51 (1920) CrossRefMathSciNetGoogle Scholar
  7. 7.
    Inam, I., Wiese, G.: Equidistribution of signs for modular eigenforms of half integral weight. Arch. Math. 101(4), 331–339 (2013) CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Korevaar, J.: The Wiener–Ikehara theorem by complex analysis. Proc. Am. Math. Soc. 134(4), 1107–1116 (2006) CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Kohnen, W., Lau, Y.-K., Wu, J.: Fourier coefficients of cusp forms of half-integral weight. Math. Z. 273, 29–41 (2013) CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Kuipers, L., Niederreiter, H.: Uniform Distribution of Sequences. Wiley, New York (1974) zbMATHGoogle Scholar
  11. 11.
    Miyake, T.: Modular Forms. Springer, Berlin (2006). x+335 pp. zbMATHGoogle Scholar
  12. 12.
    Murty, V.K.: Explicit formulae and the Lang–Trotter conjecture. Rocky Mt. J. Math. 15(2), 535–551 (1985) CrossRefzbMATHGoogle Scholar
  13. 13.
    Narkiewicz, W.: Elementary and Analytic Theory of Algebraic Numbers, 3rd edn. Springer, Berlin (1990). 708 pp. zbMATHGoogle Scholar
  14. 14.
    Niwa, S.: Modular forms of half integral weight and the integral of certain theta-functions. Nagoya Math. J. 56, 147–161 (1974) MathSciNetGoogle Scholar
  15. 15.
    Rajan, C.S.: Distribution of values of Hecke characters of infinite order. Acta Arith. 85, 279–291 (1998) zbMATHMathSciNetGoogle Scholar
  16. 16.
    Ribet, K.A.: Galois Representations Attached to Eigenforms with Nebentypus, Modular Functions of One Variable, vol. V, pp. 17–51. Springer, Berlin (1977) Google Scholar
  17. 17.
    Rosser, B.: Explicit bounds for some functions of prime numbers. Am. J. Math. 63(1), 211–232 (1941) CrossRefMathSciNetGoogle Scholar
  18. 18.
    Rouse, J., Thorner, J.: The explicit Sato–Tate conjecture and densities pertaining to Lehmer type questions. Preprint. arXiv:1305.5283
  19. 19.
    Serre, J.-P.: Divisibilité de certaines fonctions arithmétiques. Enseign. Math. (2) 22(3-4), 227–260 (1976) zbMATHGoogle Scholar
  20. 20.
    Serre, J.P.: Quelques applications du théorème de densité de Chebotarev. Inst. Hautes Études Sci. Publ. Math. 54, 323–401 (1981) CrossRefGoogle Scholar
  21. 21.
    Shimura, G.: On modular forms of half-integral weight. Ann. Math. 97, 440–481 (1973) CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Tunnell, J.B.: A classical Diophantine problem and modular forms of weight 3/2. Invent. Math. 72, 323–334 (1983) CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    Waldspurger, J.-L.: Sur les coefficients de Fourier des formes modulaires de poids demi-entier. J. Math. Pures Appl. 60, 375–484 (1981) zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Faculté des Sciences, de la Technologie et de la CommunicationUniversité du LuxembourgLuxembourgLuxembourg
  2. 2.Department of Mathematics, Faculty of Arts and SciencesUludag UniversityGorukleTurkey

Personalised recommendations