The Ramanujan Journal

, Volume 36, Issue 1–2, pp 123–147 | Cite as

s-Lecture hall partitions, self-reciprocal polynomials, and Gorenstein cones

  • Matthias Beck
  • Benjamin BraunEmail author
  • Matthias Köppe
  • Carla D. Savage
  • Zafeirakis Zafeirakopoulos


In 1997, Bousquet-Mélou and Eriksson initiated the study of lecture hall partitions, a fascinating family of partitions that yield a finite version of Euler’s celebrated odd/distinct partition theorem. In subsequent work on s-lecture hall partitions, they considered the self-reciprocal property for various associated generating functions, with the goal of characterizing those sequences s that give rise to generating functions of the form \(((1-q^{e_{1}})(1-q^{e_{2}}) \cdots(1-q^{e_{n}}))^{-1}\).

We continue this line of investigation, connecting their work to the more general context of Gorenstein cones. We focus on the Gorenstein condition for s-lecture hall cones when s is a positive integer sequence generated by a second-order homogeneous linear recurrence with initial values 0 and 1. Among such sequences s, we prove that the n-dimensional s-lecture hall cone is Gorenstein for all n≥1 if and only if s is an -sequence, i.e., recursively defined through s 0=0, s 1=1, and s i =ℓs i−1s i−2 for i≥2. One consequence is that among such sequences s, unless s is an -sequence, the generating function for the s-lecture hall partitions can have the form \(((1-q^{e_{1}})(1-q^{e_{2}}) \cdots(1-q^{e_{n}}))^{-1}\) for at most finitely many n.

We also apply the results to establish several conjectures by Pensyl and Savage regarding the symmetry of h -vectors for s-lecture hall polytopes. We end with open questions and directions for further research.


Lecture hall partition Polyhedral cone Generating function Gorenstein Self-reciprocal polynomial 

Mathematics Subject Classification (2010)

05A17 05A19 52B11 13A02 13H10 



The authors thank the American Institute of Mathematics for support of our SQuaRE working group on “Polyhedral Geometry and Partition Theory.” We are deeply grateful to a referee who took time and care and did a thorough job of checking the paper. In the end (s)he understood the paper better than we did.


  1. 1.
    Beck, M., Robins, S.: Computing the Continuous Discretely: Integer-Point Enumeration in Polyhedra. Undergraduate Texts in Mathematics. Springer, New York (2007). Electronically available at Google Scholar
  2. 2.
    Bousquet-Mélou, M., Eriksson, K.: Lecture hall partitions. Ramanujan J. 1(1), 101–111 (1997) CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Bousquet-Mélou, M., Eriksson, K.: Lecture hall partitions. II. Ramanujan J. 1(2), 165–185 (1997) CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Bruns, W., Herzog, J.: Cohen-Macaulay Rings. Cambridge Studies in Advanced Mathematics, vol. 39. Cambridge University Press, Cambridge (1993) zbMATHGoogle Scholar
  5. 5.
    Ehrhart, E.: Sur les polyèdres rationnels homothétiques à n dimensions. C. R. Acad. Sci. Paris 254, 616–618 (1962) zbMATHMathSciNetGoogle Scholar
  6. 6.
    Halava, V., Harju, T., Hirvensalo, M.: Positivity of second order linear recurrent sequences. Discrete Appl. Math. 154(3), 447–451 (2006) CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Hochster, M.: Rings of invariants of tori, Cohen–Macaulay rings generated by monomials, and polytopes. Ann. Math. (2) 96, 318–337 (1972) CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Loehr, N.A., Savage, C.D.: Generalizing the combinatorics of binomial coefficients via -nomials. Integers 10(A45), 531–558 (2010) zbMATHMathSciNetGoogle Scholar
  9. 9.
    Pensyl, T.W., Savage, C.D.: Rational lecture hall polytopes and inflated Eulerian polynomials. Ramanujan J. 31, 97–114 (2013) CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Savage, C.D., Schuster, M.J.: Ehrhart series of lecture hall polytopes and Eulerian polynomials for inversion sequences. J. Comb. Theory, Ser. A 119, 850–870 (2012) CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Savage, C.D., Viswanathan, G.: The 1/k-Eulerian polynomials. Electron. J. Comb. 19, P9 (2012). 21 pp. (electronic) MathSciNetGoogle Scholar
  12. 12.
    Savage, C.D., Yee, A.J.: Euler’s partition theorem and the combinatorics of -sequences. J. Comb. Theory, Ser. A 115(6), 967–996 (2008) CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Stanley, R.P.: Hilbert functions of graded algebras. Adv. Math. 28(1), 57–83 (1978) CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Matthias Beck
    • 1
  • Benjamin Braun
    • 2
    Email author
  • Matthias Köppe
    • 3
  • Carla D. Savage
    • 4
  • Zafeirakis Zafeirakopoulos
    • 5
  1. 1.Department of MathematicsSan Francisco State UniversitySan FranciscoUSA
  2. 2.Department of MathematicsUniversity of KentuckyLexingtonUSA
  3. 3.Department of MathematicsUniversity of California, DavisDavisUSA
  4. 4.Department of Computer ScienceNorth Carolina State UniversityRaleighUSA
  5. 5.Research Institute for Symbolic ComputationJohannes Kepler UniversityLinzAustria

Personalised recommendations