The Ramanujan Journal

, Volume 35, Issue 1, pp 131–139 | Cite as

q-Generalizations of Mortenson’s identities and further identities

Article

Abstract

By means of partial fraction decomposition, we give simple proofs of Mortenson’s identities first. Then, inspired by them, we derive their q-generalizations and explore further identities of similar type.

Keywords

Harmonic number Mortenson’s identities Supercongruences 

Mathematics Subject Classification (2000)

05A30 05A19 

References

  1. 1.
    Ahlgren, S., Ekhad, S.B., Ono, K., Zeilberger, D.: A binomial coefficient identity associated to a conjecture of Beukers. Electron. J. Comb. 5, 10 (1998) (Research paper) MathSciNetMATHGoogle Scholar
  2. 2.
    Ahlgren, S., Ono, K.: A Gaussian hypergeometric series evaluation and Apéry number congruences. J. Reine Angew. Math. 518, 187–212 (2000) MathSciNetMATHGoogle Scholar
  3. 3.
    Chu, W.: A binomial coefficient identity associated with Beukers’ conjecture on Apéry numbers. Electron. J. Comb. 11(1), 15 (2004) MATHGoogle Scholar
  4. 4.
    Gasper, G., Rahman, M.: Basic Hypergeometric Series, 2nd edn. Cambridge University Press, Cambridge (2004) CrossRefMATHGoogle Scholar
  5. 5.
    Mansour, T., Shattuck, M., Song, C.: q-Analogs of identities involving harmonic numbers and binomial coefficients. Appl. Appl. Math. 7(1), 22–36 (2012) MathSciNetMATHGoogle Scholar
  6. 6.
    McCarthy, D.: Binomial coefficient-harmonic sum identities associated to supercongruences. Integers 11, A37 (2011). 8 pp. MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    McCarthy, D.: Extending Gaussian hypergeometric series to the p-adic setting. Int. J. Number Theory 8(7), 1581–1612 (2012) MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    McCarthy, D.: On a supercongruence conjecture of Rodriguez–Villegas. Proc. Am. Math. Soc. 140, 2241–2254 (2012) MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Mortenson, E.: On differentiation and harmonic numbers. Util. Math. 80, 53–57 (2009) MathSciNetMATHGoogle Scholar
  10. 10.
    Mortenson, E.: Supercongruences between truncated 2 F 1 hypergeometric functions and their Gaussian analogs. Trans. Am. Math. Soc. 335, 139–147 (2003) MathSciNetMATHGoogle Scholar
  11. 11.
    Prodinger, H.: Mortenson’s identities and partial fraction decomposition. Util. Math., accepted. http://math.sun.ac.za/~hproding/paperlst.htm
  12. 12.
    Rodriguez-Villegas, F.: Hypergeometric Families of Calabi–Yau Manifolds. Calabi–Yau Varieties and Mirror Symmetry. Fields Inst. Commun., vol. 38. AMS, Providence (2003) MATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.College of ScienceNanjing University of Posts and TelecommunicationsNanjingChina
  2. 2.Department of Information TechnologyHainan Medical CollegeHaikouChina

Personalised recommendations