The Ramanujan Journal

, Volume 34, Issue 1, pp 39–55 | Cite as

Special functions associated with complex reflection groups

Article

Abstract

In this paper, we first review the theory of Dunkl operators for complex reflection groups and then the theory of hyper-Bessel functions, which are a particular case of Meijer’s G-function and satisfy a higher order differential equation. Then we show that there exists a close relation between both theories. In fact, the components of the eigenfunctions of a Dunkl operator for a complex reflection group in the rank one case can be expressed in terms of hyper-Bessel functions.

Keywords

Special functions Meijer’s G-function 

Mathematics Subject Classification (2000)

33E30 33C52 

References

  1. 1.
    Ben Cheikh, Y.: Differential equations satisfied by the components with respect to the cyclic group of order n of some special functions. J. Math. Anal. Appl. 244(2), 483–497 (2000) CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Davis, P.J.: Circulant Matrices, 2nd edn. Chelsea, New York (1994) MATHGoogle Scholar
  3. 3.
    Delerue, P.: Sur le calcul symbolique à n variables et les fonctions hyperbesséliennes. II. Fonctions hyperbesséliennes. Ann. Soc. Sci. Brux., Sér. I 67, 229–274 (1953) MATHMathSciNetGoogle Scholar
  4. 4.
    Dimovski, I.H., Kiryakova, V.S.: Generalized Poisson transmutations and corresponding representations of hyper-Bessel functions. C. R. Acad. Bulgare Sci. 39(10), 29–32 (1986) MATHMathSciNetGoogle Scholar
  5. 5.
    Dunkl, C.F.: Differential-difference operators associated to reflection groups. Trans. Am. Math. Soc. 311, 167–183 (1989) CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Dunkl, C.F., Opdam, E.M.: Dunkl operators for complex reflection groups. Proc. Lond. Math. Soc. 86(3), 70–108 (2003) CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F.G.: Higher Transcendental Functions. Vol. III. McGraw-Hill, New York (1955) MATHGoogle Scholar
  8. 8.
    Fitouhi, A., Dhaouadi, L., Bouzeffour, F.: r-Extension of Dunkl operator in one variable and Bessel functions of vector index (2013). arXiv:1209.5277v3 [math.FA]
  9. 9.
    Kiryakova, V.S.: New integral representations of the generalized hypergeometric functions. C. R. Acad. Bulgare Sci. 39(12), 33–36 (1986) MATHMathSciNetGoogle Scholar
  10. 10.
    Kiryakova, V.S.: Obrechkoff integral transform and hyper-Bessel operators via G-function and fractional calculus approach. Glob. J. Pure Appl. Math. 1, 321–341 (2005) MATHMathSciNetGoogle Scholar
  11. 11.
    Klyuchantsev, M.I.: Singular differential operators with r−1 parameters and Bessel functions of a vector index. Sib. Math. J. 24, 353–367 (1983) CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Muldoon, M.E.: Generalized hyperbolic functions, circulant matrices and functional equations. Linear Algebra Appl. 406, 272–284 (2005) CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Watson, G.N.: A Treatise on the Theory of Bessel Functions, 2nd edn. Cambridge University Press, Cambridge (1944) MATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Mathematics, College of SciencesKing Saud UniversityRiyadhSaudi Arabia

Personalised recommendations