Special functions associated with complex reflection groups
Article
First Online:
Received:
Accepted:
- 179 Downloads
- 2 Citations
Abstract
In this paper, we first review the theory of Dunkl operators for complex reflection groups and then the theory of hyper-Bessel functions, which are a particular case of Meijer’s G-function and satisfy a higher order differential equation. Then we show that there exists a close relation between both theories. In fact, the components of the eigenfunctions of a Dunkl operator for a complex reflection group in the rank one case can be expressed in terms of hyper-Bessel functions.
Keywords
Special functions Meijer’s G-functionMathematics Subject Classification (2000)
33E30 33C52References
- 1.Ben Cheikh, Y.: Differential equations satisfied by the components with respect to the cyclic group of order n of some special functions. J. Math. Anal. Appl. 244(2), 483–497 (2000) CrossRefMATHMathSciNetGoogle Scholar
- 2.Davis, P.J.: Circulant Matrices, 2nd edn. Chelsea, New York (1994) MATHGoogle Scholar
- 3.Delerue, P.: Sur le calcul symbolique à n variables et les fonctions hyperbesséliennes. II. Fonctions hyperbesséliennes. Ann. Soc. Sci. Brux., Sér. I 67, 229–274 (1953) MATHMathSciNetGoogle Scholar
- 4.Dimovski, I.H., Kiryakova, V.S.: Generalized Poisson transmutations and corresponding representations of hyper-Bessel functions. C. R. Acad. Bulgare Sci. 39(10), 29–32 (1986) MATHMathSciNetGoogle Scholar
- 5.Dunkl, C.F.: Differential-difference operators associated to reflection groups. Trans. Am. Math. Soc. 311, 167–183 (1989) CrossRefMATHMathSciNetGoogle Scholar
- 6.Dunkl, C.F., Opdam, E.M.: Dunkl operators for complex reflection groups. Proc. Lond. Math. Soc. 86(3), 70–108 (2003) CrossRefMATHMathSciNetGoogle Scholar
- 7.Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F.G.: Higher Transcendental Functions. Vol. III. McGraw-Hill, New York (1955) MATHGoogle Scholar
- 8.Fitouhi, A., Dhaouadi, L., Bouzeffour, F.: r-Extension of Dunkl operator in one variable and Bessel functions of vector index (2013). arXiv:1209.5277v3 [math.FA]
- 9.Kiryakova, V.S.: New integral representations of the generalized hypergeometric functions. C. R. Acad. Bulgare Sci. 39(12), 33–36 (1986) MATHMathSciNetGoogle Scholar
- 10.Kiryakova, V.S.: Obrechkoff integral transform and hyper-Bessel operators via G-function and fractional calculus approach. Glob. J. Pure Appl. Math. 1, 321–341 (2005) MATHMathSciNetGoogle Scholar
- 11.Klyuchantsev, M.I.: Singular differential operators with r−1 parameters and Bessel functions of a vector index. Sib. Math. J. 24, 353–367 (1983) CrossRefMATHMathSciNetGoogle Scholar
- 12.Muldoon, M.E.: Generalized hyperbolic functions, circulant matrices and functional equations. Linear Algebra Appl. 406, 272–284 (2005) CrossRefMATHMathSciNetGoogle Scholar
- 13.Watson, G.N.: A Treatise on the Theory of Bessel Functions, 2nd edn. Cambridge University Press, Cambridge (1944) MATHGoogle Scholar
Copyright information
© Springer Science+Business Media New York 2013