Advertisement

The Ramanujan Journal

, Volume 31, Issue 3, pp 315–352 | Cite as

An explicit formula for the Fourier coefficients of Eisenstein series attached to lattices

  • Shunsuke Yamana
Article

Abstract

We prove an explicit formula for local densities of inhomogeneous quadratic forms. The formula is derived by calculating explicitly the Fourier coefficients of various types of Eisenstein series.

Keywords

Eisenstein series Local density Jacobi forms 

Mathematics Subject Classification

11F30 11F27 

Notes

Acknowledgements

We thank the referee for suggesting many improvements to the paper. The author is supported by the Grant-in-Aid for JSPS Fellows.

References

  1. 1.
    Böcherer, S.: Über die Fourier–Jacobi–Entwicklung Siegelscher Eisensteinreihen I. Math. Z. 183, 21–46 (1983) MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Böcherer, S.: Über die Fourier–Jacobi–Entwicklung Siegelscher Eisensteinreihen II. Math. Z. 189, 81–110 (1985) MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Bruinier, J.H.: Borcherds Products on O(2,l) and Chern Classes of Heegner Divisors. Springer Lec. Notes in Math., vol. 1780 (2002) zbMATHCrossRefGoogle Scholar
  4. 4.
    Bruinier, J.H., Kuss, M.: Eisenstein series attached to lattices and modular forms on orthogonal groups. Manuscr. Math. 106, 443–459 (2001) MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Cohen, H.: Sums involving the values at negative integers of L-functions of quadratic characters. Math. Ann. 217, 271–285 (1975) MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Eichler, M.: Quadratische Formen und Orthogonale Gruppen. Springer, Heiderberg (1952) zbMATHCrossRefGoogle Scholar
  7. 7.
    Eichler, M., Zagier, D.: The Theory of Jacobi Forms. Progr. Math., vol. 55. Birkhäuser, Boston (1985) zbMATHGoogle Scholar
  8. 8.
    Gelbart, S.: Weil’s Representation and the Spectrum of the Metaplectic Group. Springer Lec. Notes in Math., vol. 530 (1976) zbMATHGoogle Scholar
  9. 9.
    Gritsenko, V.: Fourier–Jacobi functions in n variables. Zap. Nauč. Semin. POMI 168, 32–44 (1988) Google Scholar
  10. 10.
    Gritsenko, V.: Fourier–Jacobi functions in n variables. J. Sov. Math. 53, 242–252 (1991) MathSciNetGoogle Scholar
  11. 11.
    Ikeda, T.: On the theory of Jacobi forms and the Fourier–Jacobi coefficients of Eisenstein series. J. Math. Kyoto Univ. 34, 615–636 (1994) MathSciNetzbMATHGoogle Scholar
  12. 12.
    Katsurada, H.: An explicit formula for Siegel series. Am. J. Math. 121, 415–452 (1999) MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Kudla, S.: Integrals of Borcherds forms. Compos. Math. 137, 293–349 (2003) MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Kudla, S., Rallis, S.: On the Weil–Siegel formula. J. Reine Angew. Math. 387, 1–68 (1988) MathSciNetzbMATHGoogle Scholar
  15. 15.
    Kudla, S., Rapoport, M., Yang, T.: Modular Forms and Special Cycles on Shimura Curves. Annals of Math. Studies, vol. 161. Princeton University Press, Princeton (2006) zbMATHGoogle Scholar
  16. 16.
    Kudla, S., Yang, T.: Eisenstein series for SL(2). Sci. China Math. 53(9), 2275–2316 (2010) MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Miyake, T.: Modular Forms. Springer, Heidelberg (1989) zbMATHGoogle Scholar
  18. 18.
    Rao, R.: On some explicit formulas in the theory of Weil representations. Pac. J. Math. 157, 335–371 (1993) zbMATHCrossRefGoogle Scholar
  19. 19.
    Scheithauer, N.R.: On the classification of automorphic products and generalized Kac–Moody algebras. Invent. Math. 164, 641–678 (2006) MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Shimura, G.: Confluent hypergeometric functions on the tube domain. Math. Ann. 260, 269–302 (1982) MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Shimura, G.: An exact mass formula for orthogonal groups. Duke Math. J. 97, 1–66 (1999) MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Shimura, G.: The number of representations of an integer by a quadratic form. Duke Math. J. 100, 59–92 (1999) MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Shimura, G.: The representation of integers as sums of squares. Am. J. Math. 124, 1059–1081 (2002) MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Shimura, G.: Inhomogeneous quadratic forms and triangular numbers. Am. J. Math. 126, 191–214 (2004) MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Shimura, G.: Arithmetic of Quadratic Forms. Springer, Berlin (2010) zbMATHCrossRefGoogle Scholar
  26. 26.
    Siegel, C.L.: Lectures on quadratic forms. Tata Institute Lectures in Math., no. 7 (1967) Google Scholar
  27. 27.
    Skoruppa, N.P.: Jacobi forms of critical weight and Weil representations. In: Modular Forms on Schiermonnikoog, pp. 239–266. Cambridge University Press, Cambridge (2008) CrossRefGoogle Scholar
  28. 28.
    Sugano, T.: Jacobi forms and theta lifting. Comment. Math. Univ. St. Pauli 44, 1–58 (1995) MathSciNetzbMATHGoogle Scholar
  29. 29.
    Waldspurger, J.-L.: Sur les coefficients de fourier des formes modulaires de poids demi-entier. J. Math. Pures Appl. 60, 375–484 (1981) MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Faculty of MathematicsKyushu UniversityNishi-kuJapan

Personalised recommendations