The Ramanujan Journal

, Volume 29, Issue 1–3, pp 225–256 | Cite as

On the smooth transfer conjecture of Jacquet–Rallis for n=3

  • Wei ZhangEmail author


We obtain a relative Shalika germ expansion of orbital integrals appeared in the relative trace formulae Jacquet–Rallis when n=3. This is the first example where there are infinitely many nilpotent orbits. As an application we can prove the smooth transfer conjecture of Jacquet–Rallis for n=3.


Relative trace formula Shalika germs Smooth transfer 

Mathematics Subject Classification

22E35 11F85 



The author thanks the anonymous referee for pointing out the application to the density principle and for several comments on improving the exposition. He also thanks the Institute for Advanced Studies at the Hong Kong University of Science and Technology for their hospitality where the result was represented in a workshop in December 2011.


  1. 1.
    Aizenbud, A., Gourevitch, D.: Generalized Harish–Chandra descent, Gelfand pairs, and an Archimedean analog of Jacquet–Rallis’s theorem. Duke Math. J. 149(3), 509–567 (2009). With an appendix by the authors and Eitan Sayag MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Jacquet, H., Chen, N.: Positivity of quadratic base change L-functions. Bull. Soc. Math. Fr. 129(1), 33–90 (2001) MathSciNetzbMATHGoogle Scholar
  3. 3.
    Jacquet, H.: Sur un résultat de Waldspurger. Ann. Sci. Éc. Norm. Super. 19(2), 185–229 (1986) MathSciNetzbMATHGoogle Scholar
  4. 4.
    Jacquet, H., Rallis, S.: On the Gross–Prasad conjecture for unitary groups. In: On Certain L-functions. Clay Math. Proc., vol. 13, pp. 205–264. Am. Math. Soc., Providence (2011) Google Scholar
  5. 5.
    Jacquet, H., Ye, Y.: Germs of Kloosterman integrals for GL(3). Trans. Am. Math. Soc. 351(3), 1227–1255 (1999) MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Rader, C., Rallis, S.: Spherical characters on p-adic symmetric spaces. Am. J. Math. 118, 91–178 (1996) MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Ranga Rao, R.: Orbital integrals in reductive groups. Ann. Math. 96, 505–510 (1972) MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Shalika, J.A.: A theorem on semi-simple P-adic groups. Ann. Math. 95(2), 226–242 (1972). Second series MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Zhang, W.: Fourier transform and the global Gan–Gross–Prasad conjecture for unitary groups. Preprint (2011) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of MathematicsColumbia UniversityNew YorkUSA

Personalised recommendations