The Ramanujan Journal

, Volume 29, Issue 1–3, pp 163–183 | Cite as

Sporadic sequences, modular forms and new series for 1/π

  • Shaun CooperEmail author


Two new sequences, which are analogues of six sporadic examples of D. Zagier, are presented. The connection with modular forms is established and some new series for 1/π are deduced. The experimental procedure that led to the discovery of these results is recounted. Proofs of the main identities will be given, and some congruence properties that appear to be satisfied by the sequences will be stated as conjectures.


Congruence Modular form Pi Sporadic sequence 

Mathematics Subject Classification (2000)

11F11 11F27 11Y60 33C05 33E05 05A10 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Almkvist, G., van Enckevort, C., van Straten, D., Zudilin, W.: Tables of Calabi–Yau equations. (webpage accessed July 14, 2011)
  2. 2.
    Almkvist, G., van Straten, D., Zudilin, W.: Generalizations of Clausen’s formula and algebraic transformations of Calabi–Yau differential equations. Proc. Edinb. Math. Soc. 54, 273–295 (2011) MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Barrucand, P.: Sur la somme des puissances des coefficients multinomiaux et les puissances successives d’une fonction de Bessel. C. R. Acad. Sci. Paris 258, 5318–5320 (1964) MathSciNetzbMATHGoogle Scholar
  4. 4.
    Baruah, N.D., Berndt, B.C., Chan, H.H.: Ramanujan’s series for 1/π: a survey. Am. Math. Mon. 116, 567–587 (2009) MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Berndt, B.C.: Ramanujan’s Notebooks, Part III. Springer, New York (1991) zbMATHCrossRefGoogle Scholar
  6. 6.
    Chan, H.H., Chan, S.H., Liu, Z.-G.: Domb’s numbers and Ramanujan–Sato type series for 1/π. Adv. Math. 186, 396–410 (2004) MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Chan, H.H., Cooper, S.: Powers of theta functions. Pac. J. Math. 235, 1–14 (2008) MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Chan, H.H., Cooper, S.: Rational analogues of Ramanujan’s series for 1/π, preprint Google Scholar
  9. 9.
    Chan, H.H., Cooper, S., Sica, F.: Congruences satisfied by Apéry-like numbers. Int. J. Number Theory 6, 89–97 (2010) MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Chan, H.H., Loo, K.P.: Ramanujan’s cubic continued fraction revisited. Acta Arith. 126, 305–313 (2007) MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Chan, H.H., Ong, Y.L.: On Eisenstein series and \(\sum_{m,n=-\infty}^{\infty }q^{m^{2}+mn+2n^{2}}\). Proc. Am. Math. Soc. 127, 1735–1744 (1999) MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Chan, H.H., Tanigawa, Y., Yang, Y., Zudilin, W.: New analogues of Clausen’s identities arising from the theory of modular forms. Adv. Math. 228, 1294–1314 (2011) MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Chan, H.H., Verrill, H.: The Apéry numbers, the Almkvist–Zudilin numbers and new series for 1/π. Math. Res. Lett. 16, 405–420 (2009) MathSciNetzbMATHGoogle Scholar
  14. 14.
    Conway, J.H., Norton, S.P.: Monstrous moonshine. Bull. Lond. Math. Soc. 11, 308–339 (1979) MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Cooper, S.: Series and iterations for 1/π. Acta Arith. 141, 33–58 (2010) MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Cooper, S.: Series for 1/π from level 10, J. Ramanujan Math. Soc., to appear Google Scholar
  17. 17.
    Cooper, S., Toh, P.C.: Quintic and septic Eisenstein series. Ramanujan J. 19, 163–181 (2009) MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Elaydi, S.: An Introduction to Difference Equations, 3rd edn. Springer, New York (2005) zbMATHGoogle Scholar
  19. 19.
    Elsner, C.: On recurrence formulae for sums involving binomial coefficients. Fibonacci Q. 43, 31–45 (2005) MathSciNetzbMATHGoogle Scholar
  20. 20.
    Franel, J.: Solution to question 42. L’Intermédiaire des Math. 1, 45–47 (1894) Google Scholar
  21. 21.
    Franel, J.: Solution to question 170. L’Intermédiaire des Math. 2, 33–35 (1895) Google Scholar
  22. 22.
    Maier, R.S.: On rationally parametrized modular equations. J. Ramanujan Math. Soc. 24, 1–73 (2009) MathSciNetzbMATHGoogle Scholar
  23. 23.
    Ramanujan, S.: Modular equations and approximations to π. Q. J. Math. 45, 350–372 (1914) Google Scholar
  24. 24.
    Ramanujan, S.: Notebooks (2 vols.). Tata, Bombay (1957) zbMATHGoogle Scholar
  25. 25.
    Rogers, M.D.: New 5 F 4 hypergeometric transformations, three-variable Mahler measures, and formulas for 1/π. Ramanujan J. 18, 327–340 (2009) MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Sato, T.: Apéry numbers and Ramanujan’s series for 1/π. Abstract of a talk presented at the Annual meeting of the Mathematical Society of Japan, 28–31 March (2002) Google Scholar
  27. 27.
    Stanley, R.P.: Enumerative Combinatorics, vol. 2. Cambridge University Press, Cambridge (1999) CrossRefGoogle Scholar
  28. 28.
    van der Poorten, A.: A proof that Euler missed …Apéry’s proof of the irrationality of ζ(3). An informal report. Math. Intell. 1(4), 195–203 (1978/1979) CrossRefGoogle Scholar
  29. 29.
    Verrill, H.A.: Some congruences related to modular forms, preprint. (webpage accessed: Sept. 15, 2010)
  30. 30.
    Zagier, D.: Integral solutions of Apéry-like recurrence equations. In: Groups and Symmetries. CRM Proc. Lecture Notes, vol. 47, pp. 349–366. Am. Math. Soc., Providence (2009) Google Scholar
  31. 31.
    Zudilin, W.: Ramanujan-type formulae for 1/π: a second wind? In: Modular Forms and String Duality. Fields Inst. Commun., vol. 54, pp. 179–188. Am. Math. Soc., Providence (2008) Google Scholar
  32. 32.
    Zudilin, W.: Private communication, March 23 (2011) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Institute of Information and Mathematical SciencesMassey University-AlbanyAucklandNew Zealand

Personalised recommendations