The Ramanujan Journal

, Volume 27, Issue 2, pp 229–233 | Cite as

On core and bar-core partitions

Article

Abstract

If s and t are relatively prime integers, J.B. Olsson proved in (J. Comb. Theory, Ser. A 116:733–740, 2009) that the s-core of a t-core partition is again a t-core partition, and that the s-bar-core of a t-bar-core partition is again a t-bar-core partition. Here generalised results are proved for partitions and bar partitions when the restriction that s and t be relatively prime is removed.

Keywords

Partitions Bar partitions Core Bar-core 

Mathematics Subject Classification (2000)

20C30 20C15 20C20 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Berkovich, A., Garvan, F.: The GBG-rank and t-cores I. Counting and 4-cores. J. Comb. Number Theory 1(3), 237–252 (2009) MathSciNetGoogle Scholar
  2. 2.
    Cabanes, M.: Local structure of the p-blocks of \(\tilde{S}_{n}\). Math. Z. 198, 519–543 (1988) MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Fayers, M.: The t-core of an s-core. Preprint Google Scholar
  4. 4.
    Humphreys, J.F.: Blocks of projective representations of the symmetric groups. J. Lond. Math. Soc. (2) 32, 441–452 (1986) MathSciNetCrossRefGoogle Scholar
  5. 5.
    James, G., Kerber, A.: The Representation Theory of the Symmetric Group. Encyclopedia of Mathematics and Its Applications, vol. 16. Addison-Wesley Publishing Co., Reading (1981) MATHGoogle Scholar
  6. 6.
    Külshammer, B., Olsson, J., Robinson, G.R.: Generalized blocks for symmetric groups. Invent. Math. 151(3), 513–552 (2003) MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Morris, A.O.: The spin representation of the symmetric group. Can. J. Math. 17, 543–549 (1965) MATHCrossRefGoogle Scholar
  8. 8.
    Nath, R.: On the t-core of an s-core partition. Integers 8, A28 (2008) MathSciNetGoogle Scholar
  9. 9.
    Olsson, J.B.: Combinatorics and representations of finite groups. Vorlesungen aus dem Fachbereich Mathematik der Universität GH Essen, Heft 20 (1993) Google Scholar
  10. 10.
    Olsson, J.B.: A theorem on the cores of partitions. J. Comb. Theory, Ser. A 116, 733–740 (2009) MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Olsson, J.B., Stanton, D.: Block inclusions and cores of partitions. Aequ. Math. 74, 90–110 (2007) MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Institut de Mathématiques de JussieuUniversité Denis Diderot, Paris VII, UFR de MathématiquesParis Cedex 05France
  2. 2.Department of Mathematics and Computer Science, York CollegeCity University of New YorkJamaicaUSA

Personalised recommendations